
OPCAT SYSTEMS

INSIGHT 4.0

User Guide
INSIGH 4.0

Volume

2

O P CA T S Y S TE M S

INSIGHT User Guide

 OPCAT Systems (D.H) Ltd. 2005-2009

Table of Contents

PURPOSE OF THIS GUIDE .. 1

WHAT'S NEW IN INSIGHT 4.0?.. 2

OPCAT MODEL CONTROL (OMC)... 3

1. CONCEPTS .. 3
1.1 THE OMC ORGANIZATIONAL MODELS REPOSITORY ... 3
1.2 THE OMC LOCAL WORKING COPY ... 3
1.3 THE LOCK-MODIFY-UNLOCK MECHANISM .. 4
1.4 OFFLINE AND ONLINE USAGE .. 4
1.5 CREDENTIALS – USER NAME AND PASSWORD .. 4
2. USER CONSOLES SHOWN IN OPS .. 4
2.1 FILE CONSOLE... 5
2.2 ADMIN CONSOLE .. 5
2.3 MESSAGES CONSOLE .. 5
3. BASIC CONTROLLER ... 6
4. REPOS ITORY BROWS ER CONTROLLERS ... 7
4.1 CHECKING OUT ... 7
4.2 CHECKING OUT LOCKED FILES.. 7
4.3 GET .. 8
4.4 IMPORT .. 8
4.5 DELETE.. 8
4.6 REVISIONS ... 9
4.7 SHOW PROPERTIES.. 9
4.8 REFRESH.. 9
4.9 ADD DIRECTORY... 9
4.10 MODEL SYMBOLS IN THE REPOSITORY BROWSER...10
5. MODEL CONTROLLERS...11
5.1 MODELS ROOT DIRECTORIES ...11
5.2 OPENING A CHECKED-OUT MODEL..11
5.3 ADDING A DIRECTORY FROM THE REPOSITORY TO “WORKING COPY ”11
5.4 ADDING NEW DIRECTORIES FROM YOUR LOCAL DRIVE TO THE REPOSITORY11
5.5 ADDING FILES FROM YOUR LOCAL DRIVE TO THE REPOSITORY ...12
5.6 COMMIT...12
5.7 LOCK AND UNLOCK ..13
5.8 DELETE FILE ...13
5.9 UPDATE ...13
5.10 REVERT ..13
5.11 CLEANUP ...14

5.12 ADD OR MAKE DIRECTORY ..14
5.13 DELETE LOCALLY ...14
5.14 REVISION ...14
5.15 READ-ONLY MODELS ...14
5.16 ADD LOCAL DIRECTORY TO THE MODELS TAB...15
5.17 FILE NAMES ...15
5.18 FILE ICONS ...15

REUSE AND DEPENDENCY TRACKING ..17

6. REUS E: BASIC DEFINITIONS ...17
6.1 THING PARENT AND SUCCESSOR ...17
6.2 APPEARANCE ..18
6.3 PRIVATE AND PUBLIC ...19
7. THE EXPOS ED THINGS LIST ...19
8. MARKING A THING AS ENVIRONMENTAL...19
9. EXPOS ING A REUS ED THING TO MAKE IT A PARENT THING ...19
10. REPORTS ON DEPENDENCIES OF PROGRAMS OR MODELS ON REUS ED THINGS 20
10.1 DEPENDENCY REPORTS FROM THE EXPOSED THINGS LIST...20

10.1.1 Local Successors Report .. 20
10.1.2 Show Successors Report .. 20

10.2 DEPENDENCY REPORTS PRODUCED BY RIGHT-CLICKING A THING20
10.2.1 Show Local Successors (Right-Clicking on a Used Thing) .. 20
10.2.2 Show Successors (Right-Clicking on an Exposed Thing)... 21
10.2.3 Show Parent Thing .. 21
10.2.4 Open Parent Model .. 21

11. EXPOS E OPTIONS AND SYMBOLS ...21
12. EXPOS ING A THING ...22
13. EXPOS ING THINGS WHILE BEING OFF-LINE ..23
14. REUS ING A THING ...23
14.1 SELECTING AND USING AN EXPOSED THING ...23
14.2 SETTING THE INTERFACE OR STRUCTURE OF A REUSED THING..24
14.3 CONNECTED VS. DISCONNECTED INTERFACE OR STRUCTURE ...24
14.4 SETTING A REUSED PROCESS INTERFACE WITH INTERFACE ADVISOR24
14.5 REUSING PARTS AND ATTRIBUTES OF A REUSED OBJECT WITH PROPERTIES ADVISOR25
15. CHANGING A REUS ED THING ...25
15.1 DISABLED CHANGES TO A USED THING ...25
15.2 ENABLED CHANGES TO A REUSED EXPOSED THING ...26
15.3 CHANGING AN EXPOSED THING ...26

15.3.1 Make Changes Locally... 26
15.3.2 Request Release... 26
15.3.3 Releasing an Exposed Thing (by the Exposer) .. 27
15.3.4 Commit the Changes to Exposed Thing (by the author) ... 27
15.3.5 Reuse the Modified Exposed Thing Again .. 28

15.4 SAVE AS ..28

TEMPLATES ..28

16. PRINCIPLES FOR CREATING AN ORGANIZATIONAL TEMPLATE ..29
17. STARTING A NEW MODEL FROM A TEMPLATE ..29
18. USING CONSTRUCTS IN AN EXIS TING MODEL ...29
19. ADDING THE ENTIRE CONSTRUCT ..30

CATEGORIES ..31

20. APPLYING CATEGORIES TO YOUR MODEL..31
20.1 CONNECTING MODEL ELEMENTS TO CATEGORIES VALUES ...31
20.2 DISCONNECTING MODEL ELEMENT AND CATEGORY VALUE..31

21. ANALYZING RELATIONS HIP BETWEEN CATEGORIES ..32
21.1 COLORING..32
21.2 ANALYZE ...32
22. OFF-LINE AND ON-LINE WORK ...32
23. REPORTS...33
24. CHANGING CATEGORIES BY ADMINIS TRATORS ..33

TROUBLESHOOTING AND FAQ'S..34

I N S I G H T 4 . 0 U S E R G U I D E

1

Purpose of this Guide

he purpose of this guide is to allow experienced users of OPCAT 3.0 to work with the new
features offered by INSIGHT 4.0, which include transition to server architecture, the use of

OPCAT Model Control (OMC), cross-system dependencies design and tracking mechanism,
categorization, and much more. Readers with no experience in OPM who are interested in

learning how to model are referred to the Modeling with OPCAT tutorial, which can be found on OPCAT
website www.opcat.com. Help for Vision, INSIGHT's Web-based reporting module, is also available on-

line after entering Vision. Readers who are designing RPG code should also read the RPG Conversion
Guide. Finally, if you wish to perform real model-driven design of code in your organization, you are

advised to read INSIGH Step-by- Step Model Driven Design.

Chapter

2

T

http://www.opcat.com/

 2

What's New in INSIGHT 4.0?

 NSIGHT 4.0 is an Enterprise Edition, designed for use by enterprises. To this end, it includes the

OPCAT Model Control (OMC) and messaging system modules, which allow multiple users to
model multiple systems that interact with each other. OPCAT has been further enhanced to allow

non-technical users to use the OPM system model to better understand and manage their teams and
systems. This is done via Vision—INSIGHT's Web-based reporting module. Additional features,

including Exposing and Templates, were added to enable cross-system reuse-enhanced modeling and
model management. The new Categorization module allows users to classify model elements according

to organizational classification criteria.

I

 3

OPCAT Model Control (OMC)

1. Concepts

OPCAT Model Control (OMC) is the information sharing module of INSIGHT 4.0. At its core is a

model repository, which stores OPCAT model files, and possibly other types of files, in the form of
a file system tree—a typical hierarchy of files and directories. Any number of authorized clients can

connect to the model repository, and then read from, or, under certain condition, also write to these
files. By reading, the client receives models which can be inspected. By writing, the client makes

changes she or he made to a model available to other authorized clients. Users may approach the
repository using Object-Process Studio (OPS) – INSIGHT’s client.

1.1 The OMC Organizational Models Repository

The models in OMC are stored in the organization's server as an organization-wide models

repository. This is the single place for reliably maintaining files, which is managed by the

organization's system administrator. OMC includes several directories, some of which are
reserved for special models, such as templates.

1.2 The OMC Local Working Copy

The OMC local working copy is an ordinary directory tree on your local machine,

containing a collection of files, which you checked out from the repository. You can edit

these files without any limitation. Your OMC working copy is your own private working
area. OMC will never incorporate other people's changes, nor make your own changes

available to others, until you explicitly tell it to do so.

After you have edited one or more model files in your working copy and verified that they

work properly, OMC enables you to ―commit‖ your changes, i.e., synchronize the edited
files with the repository, by writing them back into the repository, so other authorized

people working with you on the same project can use them too.

Note that not all the OPCAT model files stored on your local machine are part of your
working copy environment. Only those files which you ―checked-out‖ from the repository

or which were explicitly saved in the ―Working Copy‖ directories will be available for
synchronization with the repository. We explain this in more detail in the sequel.

 4

1.3 The Lock-Modify-Unlock Mechanism

It is all too easy for users to accidentally overwrite each other's changes in the repository.

Therefore, all version control systems have to solve the same fundamental problem: how
will the system allow users to share information, but prevent them from accidentally

stepping on each other's feet?

OMC uses a lock-modify-unlock mechanism to address the problem of many authors clobbering
each other's work. Using this mechanism, the repository allows only one person at a time to

change any given file. This exclusivity policy is managed via locks. When a file is checked-out by
one user, no other user can edit this file. All the other authorized users can, however, view the

checked-out file, edit it, and save it under a different name.

1.4 Offline and Online Usage

OPCAT allows you to work online or offline. While working online, you will be able to work in

coordination with the repository, check-out files, commit, etc. When you are disconnected from
the repository, the files that were checked out to your computer will still be there, but you will not

be able to commit them back into the repository until you reconnect. Note that unless you had
unlocked the files before disconnecting, all the files you checked out will remain locked for edit by

other users. As explained in detail below, a file or a directory you created while being offline can

be added to the repository when you are back online.

1.5 Credentials – User Name and Password

The repository is protected by a password that each user must have. You need to contact your

system administrator in order to get your credentials—both user name and password. As long as
you work with your local copies only, you will not be asked to provide your credentials. As soon

as you try to access the repository, either by clicking OPCAT’s Repository Browser tab or by
performing any action involving the repository, a login screen will appear, requiring your

credentials.

Note that different users may use the same computer. In this case, make sure you check out the

files you are working on before committing, even if those files already exist at the Working Copy
in order to clean-up the credentials.

2. User Consoles Shown in OPS

OMC provides three types of messages, which appear in the grid at the bottom part of the
application: File Console, Admin Console, and Message Console. If you do not see those messages,

you can go to View on the top bar and select the console you want to see. Conversely, if you do not
wish to see those messages, you can go to View on the top bar and unselect the console you do not

want to see. Following is a description of the content of each console.

 5

2.1 File Console

The File Console, accessible by the File Console tab in the grid bottom part, enables you to see
messages related to files or directories. Here you can find the message number, the action you

tried to perform with the file or directory, the name of the file or directory on which the action
was attempted, a message describing the results of this action, the author of the file or directory,

and the revision number.

2.2 Admin Console

The Admin Console, accessible by the Admin Console tab in the grid bottom part, shows
messages related to global information, which is not specific to a certain file or directory. The

Admin Console also presents information about errors that occur while trying to perform actions
at the models tabs or actions that involve the repository. Always check this console in case an

action was not performed as anticipated.

2.3 Messages Console

The Message Console, accessible by the Message Console tab in the grid bottom part, allows

authorized users to view all the activities performed on the server. It is a powerful tool for
managers, who can use it to estimate the work done by their team members. The information

includes message ID, the message itself, its sender (the initiator of this action), date, type, sub-type
and severity (which, for now, is set to "information" for all messages). Here you will also find

messages related to changes to Exposed things, as explained in detail in the sequel.

 6

3. Basic Controller

The left pane in OPS provides access to the controls of OMC via two tabs (see Figure 1): the

Models tabs, which include all the locally saved Working Copy, and the Repository Browser tab,
which allows you to work with models stored at the Repository. Each tab includes several directories.

Clicking on the key icon at the left-hand side of the directory opens its internal directories or files.
Actions on a file or a directory can be achieved by right-clicking the file or directory's name.

Information is frequently presented at tabs opened at the Bottom Grid.

Figure 1. The Working Copy, Repository, and Bottom Grid

Working Copy

Repository

Bottom
Grid

 7

4. Repository Browser Controllers

4.1 Checking Out

Checking out a directory amounts to copying the directory with all its files from the Repository to
your local folder. A checked-out file will appear as LOCKED for other users and marked with

the Locked-by-Me symbol when viewing it yourself in the Repository Browser.

To check out a directory, go to the Repository Browser tab, right-click on the folder you wish to

edit, and select Checkout. Now go to the Models tab, where you will find the checked out
directory (refreshing by right clicking on the root directory may be required).

To open a checked-out model, go to the Models tab and double-click on the file or right-click the
model and select either Open in Current Window or Open in New Window.

Note that you can check out directories or single files. If the directory includes several files, all the
files will be checked out. As explained below, files that were locked by other users will be checked

out as read-only. Remember that by checking out you lock all the files in the directory for editing
by other users. Therefore, you should first unlock all the files you do not need to edit at this stage.

In order to avoid confusion, you may also want to delete the unlocked files from you local copy.
To unlock a file, select Unlock from the Models tab.

Caution: if you checked out a sub-directory by checking out its entire parent directory, do not
check it out again by selecting the sub-directory. If you do so, you will create two copies of the

sub-directory in you working copy environment.

You may also check out a single file. To do so, right-click on the file at the Repository Browser

and select Checkout. Checked out files will be added at the right place in your Working Copy
environment. In case the directory was not previously checked out, it will be automatically created

in your Working Copy environment, and the file will be automatically placed at this directory.

A c t i o n S u m m a r y

Repository Browser  Right-click directory or file  Checkout  Models tab  [right-click

root directory  refresh]  Double click model or Right-click model to open in a new window

4.2 Checking Out Locked Files

A small lock icon will appear next to each OPCAT model file that had been checked out by
another user. You can find out more details about the identity of the user who checked out each

file by right-clicking on the file icon and selecting Show Properties. You can still check out the
file. OPCAT will not allow you to save the files, but the Save As function will still be available.

 8

4.3 Get

Get does the same thing as Checkout but without locking the file. A Get command will copy the
directory with all its files from the Repository to your local folder. A checked-out file will not

appear as locked for other users. If you want to lock the directory or file you got later on, you
may use the Lock command at explained below.

A c t i o n S u m m a r y

Repository Browser  Right-click directory  Get  Models tab  [right-click root directory

 refresh]  Double click model or Right-click model to open in a new window

4.4 Import

Import allows you to add files or directories which have not yet been added to the repository
from your local machine directly to the selected directory in the Repository. To do this, in the

Repository Browser, right-click on the directory (or the root) to which you want to add the files,
and select Import. At the selection pop-up, choose the directory you want to add from your local

machine. In order to add all the files in a directory, simply select the directory. If you want to add
the directory structure itself, a directory must be inside another directory, which will be imported

(second level import). For example, suppose directory D1 has a sub-directory called D2, in which
there are two files. If you choose Import with D1, you will get D2 as part of the structure of the

directory in your Repository. However, if you choose Import with D2, you will get the two files
in the directory to which you imported in the Repository, but not the structure of D2.

A C T I O N S U M M A R Y

Repository Browser  Right-click directory  Import  Chose file or folder from the local
machine

4.5 Delete

Delete allows you to delete empty directories and files from the repository. As expected, you

cannot delete files that are locked by other users. In order to delete a file or a directory, go to the
Repository Browser and right-click on the file of directory you want to delete, then select Delete.

The file or directory that had already been checked out to your local working copy will remain on
your local machine and will not be deleted automatically. As explained below, you can manually

delete the leftover files from your local copy by clicking Delete Locally or Update (see the
Model Tab Controllers section for more details). You cannot commit a deleted file or directory,

even if they are still found in your Models tab. If you wish to undelete a file, you need to select
Update by right-clicking on the file in the Models tab and then follow the steps described below

for adding a file to the repository. Directories which were deleted cannot be restored. You will
have to create a new directory and save the files in that directory.

 9

A C T I O N S U M M A R Y

Repository Browser  Right-click empty directory or file  Delete

4.6 Revisions

Not yet implemented.

4.7 Show Properties

Show Properties allows you to see the properties of a file or a complete directory. To see a file or
directory’s properties, right-click on the file or directory and select Show Properties. Properties

include such information as lock status, locked by, etc. The properties are shown at the bottom
pane with a new tab, called Repository Properties.

A C T I O N S U M M A R Y

Repository Browser  Right-click directory or file  Show Properties

4.8 Refresh

Refresh updates the information presented on the screen. If you do not see changes you have
done, try Refresh before proceeding with any further steps. To refresh, right-click on the root

directory and choose Refresh.

A C T I O N S U M M A R Y

Repository Browser  Right-click on the root directory  Refresh

4.9 Add Directory

You can create a new directory in your repository by using Add Directory. To do this, in the
Repository Browser right-click on the directory (or the root) to which you want to add the new

directory, and select Add Directory. At the pop-up, select a name for the directory.

A C T I O N S U M M A R Y

Repository Browser  Right-click on a directory or root directory  Add Directory

 10

4.10 Model Symbols in the Repository Browser

Figure 2 .מקור ההפניה לא נמצא! שגיאה shows the symbols next to files in the Repository Browser.

I C O N K E Y

File is in normal position

File is locked

File is locked by me

 Figure 2. Symbols in the Repository Browser

 11

5. Model Controllers

5.1 Models Root Directories

At the top of the Models tab you will find two root folders: Models and Working Copy. The
Models folder is the root of your local machine, while Working Copy is the root reserved for

your working copy directories.

5.2 Opening a Checked-out Model

To open a file that was checked out, simply double click on the file. This will open the file with

the current OPCAT session. OPCAT cannot open more than one model in one session, so if you
wish to open several models, you can right-click the file and select Open in New Window, in

which case a new session of OPCAT will be opened.

A C T I O N S U M M A R Y

Models tab  Double click file

Models tab  Right-click file  Open in Current Window

Models tab  Right-click file  Open in New Window

5.3 Adding a Directory from the Repository to “Working Copy ”

You cannot add directories directly under your Working Copy root. As explained above, you can
check out directories, which will appear under Working Copy or even add sub-directories to

those directories.

5.4 Adding New Directories from Your Local Drive to the Repository

To add a new directory to your local Working Copy, which can later be added to the repository,

go to the Models tab, right-click on the parent folder to which you want to add the new
directory, and select Make Directory. Recall that you cannot add it to the root Working Copy

directory. A new directory will be created with a hazard icon. If you want to add this directory to
the repository, right-click on the new directory and select Add. This will add the directory to the

repository the next time you commit. Now, right-click on the directory and select Commit. The
directory will be added to the repository.

A C T I O N S U M M A R Y

Models tab  right-click a directory  Make Directory  Add  Commit

 12

5.5 Adding Files from Your Local Drive to the Repository

To add a new file that was created locally or a file from the repository that was saved with another
name (using Save As), the file must be saved in a working copy directory under Working Copy

which already exists in the repository or is going to be added to the repository. After saving the
file to an existing or a newly-created directory, using OPCAT's Save or Save As command, a

small hazard icon will appear next to the file at the Models tab. Right-click on the file and select
Add. A plus icon will appear next to the file, denoting that the file is scheduled to be added to the

repository the next time you click Commit. If you right-click on the file again (or on the directory
in which it is located) and click Commit, the file will be added to the repository. Remember that

by committing the file you are not locking it. If you want the file to be locked, either select Lock
or check it out from the repository after committing it.

A C T I O N S U M M A R Y

Save/Save As file  Go to Models Tab  right-click on the file and select Add  Commit
the file or directory

5.6 Commit

Once you are done editing your files, or at any time during your work, you can write those files
back to the repository by right-clicking a file or directory icon and selecting Commit. Commit is

done for the entire directory or the single file you selected. When committing, a pop-up window
will suggest adding a commit note. In addition, you can decide whether to leave the file locked or

to unlock it by marking Unlock after Commit at the same window. You can continue working
on a committed file and then commit the changes over and over again. Note that if you unlock

the file and someone else has checked it out, you will not be able to commit the file again.

A C T I O N S U M M A R Y

Models tab  right click on file/directory

select Commit  add Commit Note  mark/unmark the ―Unlock after Commit‖ checkbox

 13

5.7 Lock and Unlock

As noted, when a user is working on a file, it is locked for editing by other users. These users can
check out the file as read-only and are not able to commit the file back to the repository. You can

override this default and unlock a file which you locked yourself by right-clicking on the file and
selecting Unlock. Note that by doing this, other users may now check out the file and lock it. If

this happens, you will not be able to commit the file again to the repository. You can lock a file
you unlocked by selecting right-click Lock. You will not be able to lock the file if someone else

has already checked out the file and locked it while it was unlocked.

A C T I O N S U M M A R Y

Models tab  right click a file  Unlock

Models tab  right click a file  Lock

5.8 Delete File

Use Delete File when you want to delete a file from the repository. The file will be

scheduled for deletion the next time you commit. A red symbol shall appear next to the file.
Once you commit, the file will be deleted from the repository. After you commit the

deletion, the file will appear in your Working Copy with a hazard icon, like a file that has
not yet been added to the repository. You can delete the file completely by selecting Delete

Locally. If you regret the deletion, you can add it back to the repository by clicking Add and
Commit.

A C T I O N S U M M A R Y

Models tab  right click a file  Delete File  Commit  right click the file again  Delete

Locally

5.9 Update

Update brings back files which exist in the repository but are missing from your Working

Copy directory. Update works just like Checkout for the missing files. Update for a single
file is visible in the menu, but it will be operational only in an upcoming version of OPCAT

Server.

A C T I O N S U M M A R Y

Models tab  right click file or folder  select Update  right click on Models and refresh

5.10 Revert

If you decide that you want to throw away your changes and restart editing the file from the

last version saved in the repository, right-click the file icon and select Revert. Remember

 14

that by reverting, your local changes will be lost. The model retrieved from the repository
will be automatically opened in OPCAT.

A C T I O N S U M M A R Y

Models tab  right-click file or folder  select Revert  right-click on Models and refresh

5.11 Cleanup

If the OMC operation is interrupted (e.g., if the process is killed or the machine crashes), the

log files remain on disk. By re-executing the log files, OMC can complete the previously

started operation, and your working copy can get itself back into a consistent state. This is
exactly what Cleanup does: it searches your working copy and runs any leftover logs,

removing working copy locks in the process. To operate cleanup, select a file or directory at
your Models tab, right-click and select Cleanup.

A C T I O N S U M M A R Y

Models tab  right-click file or folder  select Cleanup  rightclick on Models and refresh

5.12 Add or Make Directory

See Section 5.4 Adding new Directories or new Files from your local drive to the Repository .

5.13 Delete Locally

Use Delete Locally when there is a file or directory on your local working copy which you
no longer need. This may be the case if you committed one or more files or directories, you

unlocked it, and you do not plan to continue working on it, but it is still part of your local
copy. In this case, you should delete those files or directories from your working copy. If

you later need one of these files or directories again, you can check out the latest version

from the repository.

A C T I O N S U M M A R Y

Models tab  right click file or directory  select Delete Locally

5.14 Revision

Not yet implemented.

5.15 Read-Only Models

If you check out a model which was locked by another user, you will get it as read-only. The
model will be marked with a small lock icon in your Models tab. If the model was then unlocked

 15

by the other user, you may now check them out for editing. Before doing so, Delete Locally the
file from your Working Copy environment.

A C T I O N S U M M A R Y

Models tab  right-click file or directory  select Delete Locally open Repository

Browser select a directory select Check-Out

5.16 Add Local Directory to the Models Tab

You can add one or more directories to your ―Local Models‖ root if you want to use them to

browse and open models on your local machine, but these directories will not be added to the
repository. Only directories under your Working Copy are managed by the OMC and can be

added to the repository. To add a local directory to Local Models, right-click on it and select Add
Directory to Local List.

A C T I O N S U M M A R Y

Models tab  Right-click on Models  Add Directory to Local List  select the directory at
the window

5.17 File Names

You can provide names to your models as you see fit according to your organization’s
conventions. Names can be in any language but cannot contain the @ symbol. Note that each

model has both a File Name and a System Name. The File Name appears at the ribbon on the
top of the OPD window. The System Name appears as the root of the OPD Hierarchy tab on

the left. The File Name and System Name need not be identical. OPCAT always references the
System Name.

5.18 File Icons

Figure 3 shows the symbols next to files in the Models tab.

F I L E I C O N K E Y

The file is in its normal state.

The file has been changed locally (appears after local save), but was not yet

committed.

The file is scheduled to be deleted upon the next commit.

The file is new, it exists only on your local machine, and it is not scheduled to be

added to the repository.

The file is new, it exists only on your local machine, and it is scheduled to be added

to the repository the next time you commit the file.

 16

 Figure 3. Symbols in the Models tab

 17

Reuse and Dependency Tracking

riting the same things over and over and then maintaining different programs doing the

same thing is expensive. To increase productivity and to save time and cost, whenever
possible, you will be required to use existing code in programs or systems you create.

However, reusing the same things multiple times creates a web of cross interdependencies
between different parts of systems and code. Reuse must therefore be done wisely. If you don’t know

what programs are available to you for potential reuse, it is less likely that you will choose the right
program. Conversely, if you reuse some other program and the developer in charge of that program is not

aware of this reuse and therefore changes the program, this can lead to dire unintended consequences.

INSIGHT 4.0 is designed with reuse and code and systems unification in mind while reducing potential

reuse pitfalls. To this end, INSIGHT 4.0 provides the designer with a list of all the available items—
programs, models, tables, and routines—along with a mechanism to coordinate between the User—the

person who reuses an item, and the Exposer—the person who exposes that item for reuse, called the
Exposed Thing.

6. Reuse: Basic Definitions

Before discussing how to expose and reuse things, we explain the underlying concepts related to the
existence of an item in several models or in several places within a model. Experienced OPCAT users

know that when you copy a thing (object or process) from one OPD and paste it in the same OPD or in
another one in the same system, you merely represent another appearance of the very same thing in the

place where it was pasted. The copied thing symbol—ellipse or rectangle—can be considered as a pointer
to the original thing. If the thing is a process, all its appearances will become active when one of them

does.

In order to reuse things, INSIGHT 4.0 expands the support for successors of a thing, so you can create

successors and not just appearances of the same parent thing.

We proceed with basic definitions to clarify the differences between parent, successor, appearance, and

occurrence.

6.1 Thing Parent and Successor

An object parent is an abstract collection of objects, for which the set of features (attributes and

operations) and their permissible, legal states and/or values is defined.

When you Expose an object, you turn this object into an object parent.

An object successor is a uniquely identifiable object derived from an object parent, and
therefore has the same set of features (attributes and operations) as the object parent from which

it was derived. At any given point in time, each attribute of an object successor is in a defined
permissible, legal state or value, or is in transition between such states or values.

W

 18

When you Reuse an object, you create an object successor which is derived from the object
parent, i.e., the exposed object.

Different object successors originating from the same parent have the same type as the parent.
They have different identifiers and may have different names, values and/or states at the same

point in time. Each object successor can change its values and/or states or the values and/or
states of any one of its attributes independently of any other successor of the same object parent.

A process parent is an abstract collection of processes, for which the set of features (attributes
and operations) and their permissible, legal states and/or values is defined.

A process successor is a uniquely identifiable entity derived from a process parent, which
occurs at a specific point in time during the system’s execution and transforms a specific set of

one or more object successors.

Different process successors of the same process parent can exist in an OPM model, and each

can be active at a different point in time, asynchronously, synchronously, sequentially or in
parallel, transforming different sets of object successors.

A thing parent is an object parent or a process parent.

A thing successor is an object successor or a process successor.

A source model of a thing successor is the model in which its thing parent exists.

6.2 Appearance

An OPM model is often complex and therefore, except for trivial cases, is spread over a possibly

large number of OPDs at various levels of detail. In order for a particular OPD to have some
level of self-containment, a certain thing parent or thing successor needs to appear in that OPD

once or more even though it is already depicted in one or more other OPDs. Therefore, the same
thing parent or thing successor can appear in more than one OPD, giving rise to the concept of

appearance, defined below.

Appearance is one of possibly many identical copies of the same thing that may appear any

number of times in various OPDs in the same OPM model, where thing in this context is an
object parent, a process parent, an object successor, or a process successor.

Any transformation that the object successor undergoes—its creation, destruction, or change of
state—is reflected in all its appearances. Likewise, any occurrence of a process successor takes

place simultaneously for all of its appearances.

In OPCAT, you create thing appearances by a simple copy-paste operation on the thing for

which you wish to create a new appearance.

 19

6.3 Private and Public

If the parent thing from which you create a successor thing is located in your model, the
successor thing is Private. If the parent thing is defined in another model, the successor

thing is Public. The next sections explain how to use Private and Public things.

7. The Exposed Things List

All the exposed things in your organization are presented in the Exposed Things List. To view the

Exposed Things List, click on the Exposed icon, which is located at the top toolbar and looks like this:

,. In response, OPCAT will present a table at the Grid in the bottom panel, labeled Exposed Things
List, showing the available exposed things and indicating for each thing its ID, Name, Description,

Exposure Information, which is optionally provided by the exposing user, a Public and Private, the
Model Name – the name of the model from which the Exposed Thing originated, and a Model

Repository Path – the complete path from the enterprise server of the Exposed Thing’s Source
Model – the model which is the source of the Exposed Thing.

Examining this list from within a particular OPCAT model, you will also find there things which were
Privately Exposed and therefore are visible only in this model. The Exposed Things List is available

for new models only after you saved the model into one of your Working Copy directories and marked it
to be added to the Repository. If you are working off-line, the Exposed Things List includes only the

Exposed Things that are private, i.e., are exposed only for the model you are currently working on.

A C T I O N S U M M A R Y

Press the Exposed icon

8. Marking a Thing as Environmental

As explained below, you can change any Exposed Thing you use. If you just want to use the exposed

thing ―as is,‖ without making any changes to it, you should mark it as environmental. This may be the
case if, for example, you are reading from a specific file which is not changeable. Reusing a Publicly

Exposed Thing and marking it as environmental is the same as copying and pasting that thing. In other
words, it is merely yet another appearance of the Exposed Thing defined in the Source Model.

9. Exposing a Reused Thing to Make It a Parent Thing

It is often the case that you would want to reuse an Exposed Thing (object or process) from another

model and then change it, making it your own parent thing. For example, you may want to add parts or
attributes to the original parent thing and then reuse the expanded parent thing. To do this, you need to

turn a successor thing into a new parent thing. OPCAT allows you to turn any reused thing into a new
parent by exposing it, and this can be repeated over and over again.

This is similar to declarations in many programming languages. If you declare a Parent thing, from
another model, we recommend that you reuse the Publicly Exposed thing at your declaration OPD and

then turn it into Privately Exposed thing. By doing this you improve the clarity of your model.

 20

Functions related to Public Things are available only when you are online. Privately Exposed Things
may be reused even if you are off-line. Therefore, if you plan to work off-line, first make sure to turn any

Public thing you plan to reuse while working off-line to Private.

10. Reports on Dependencies of Programs or Models on

Reused Things

When reusing an exposed thing, it is important to know the dependencies between the exposed thing and

programs that are already reusing it. OPCAT includes several reporting mechanisms to help you identify
such dependencies. The reports are available either from the Exposed Things List or by right-clicking

on an Exposed thing.

10.1 Dependency Reports from the Exposed Things List

10.1.1 Local Successors Report

To see all the successors of a Publicly Exposed or a Privately Exposed thing in your model,
right-click on the thing in the Exposed Things List, select Reports and then Local

Successors. A new tab, labeled Local Successors, will be opened in the grid with all the
successors of this thing in your model. Double clicking on a successor will take you to the OPD

with that successor.

A C T I O N S U M M A R Y

Select the Exposed Things List icon at the top tool bar  right-click on a thing  Reports

 Local Successors

10.1.2 Show Successors Report

In some cases you may want to inspect the global list of enterprise-wide OPCAT models in

which some Publicly Exposed thing is used. This may be useful when considering alternative
Publicly Exposed things to be selected for reuse in your model. To see this list, right-click on

the thing at the Exposed Things List, select Reports and Show Successors.

A C T I O N S U M M A R Y

Select the Exposed Things List icon at the top toolbar  right click on a thing  Reports 
Show Successors

10.2 Dependency Reports Produced by Right-Clicking a Thing

10.2.1 Show Local Successors (Right-Clicking on a Used Thing)

When you want to know about all the successors of an exposed thing in your model and where

each one of them is used, right-click on the thing marked as reused, select Expose and then
Show Local Successors. A new tab will be opened showing all the successors of this parent

thing in your model. The grid includes the ID of the thing, the Current Model Name, which is
the name of this thing in the current model, OPD Name, Source Model Name, which is the

 21

name of this thing in the model where it was exposed and whether the thing is private or not.
Note that the Current Model Name and Source Model Name will be identical unless the

name was changed in your model. You can click on any successor and OPCAT will take you to
the OPD where it appears.

A C T I O N S U M M A R Y

Right click on a thing  Expose  Show Successors

10.2.2 Show Successors (Right-Clicking on an Exposed Thing)

When you want to know about all the successors of an exposed thing in all the models in the

repository, right-click on the thing marked as exposed, select Expose and then Show
Successors. A new tab labeled Thing Name Successors will be opened, showing all the

successors of this thing in your model and in other models.

 A C T I O N S U M M A R Y

Right click on an exposed thing  Expose  Show Successors

10.2.3 Show Parent Thing

When you expose a thing privately and then reuse it several times in your model, it is helpful to

see where the Privately Exposed thing was originally exposed. To find this location in your model,
right click on a privately used thing, select Expose and then Show Parent Thing. You will

automatically jump to the OPD where the parent thing was exposed.

A C T I O N S U M M A R Y

Right click on a Used Private thing  Expose  Show Parent

10.2.4 Open Parent Model

In many cases you would like to inspect the model in which a publicly used thing was exposed.
To do this, right click on a Publicly Used thing, select Expose and then Open Parent Model. A

new OPCAT session will be opened showing the source model. Note that the model is located in
a temp directory and is not checked out. Do not attempt to make changes to this model!

A C T I O N S U M M A R Y

Right click on a Use Public thing >Expose>Open Parent Model

11. Expose Options and Symbols

A thing can be in various exposure situations. After you reuse a thing, you may want to expose this thing

again. This may be the case if you added successor things to the reused thing and now want to make the
original reused and new successor things available for future reuse.

 22

The possible exposure situations and corresponding labels are presented in מקור ההפניה לא נמצא! שגיאה. .
Originally, the label is green. If it is changed, its color will be red.

Table 1. Exposure Labels

 Thing Exposure Situation Exposure Label

1. Publicly exposed E-PB

2. Privately exposed E-PR

3. Publicly and Privately exposed E-PB-PR

4. Use-of-Privately exposed thing which was then Publicly and

Privately exposed

UPR-EPB-EPR

5. Use-of-Privately exposed thing which was then Publicly

exposed

UPR-EPB

6. Use-of-Privately exposed thing which was then Privately

exposed

UPR-EPR

7. Use-of-Privately exposed thing UPR

8. Use-of-Publicly exposed thing which was then Publicly and

Privately exposed

UPB-EPB-EPR

9. Use-of- Publicly exposed thing which was then, Publicly

exposed again

UPB-EPB

10. Use-of-Publicly exposed thing which was then Privately
exposed

UPB-EPR

11. Use-of-Publicly exposed thing UPB

12. Use-of-a thing originating from a Template* which was then

Publicly and Privately exposed

UT-EPR-EPB

13. Use-of-a thing originated from a Template* which was then
Publicly exposed

UT-EPB

14. Use-of-a thing originated from a Template* which was then
Privately exposed

UT-EPR

15. Use-of-thing from a Template* UT

* See next chapter for Explanation about Templates

12. Exposing a Thing

As noted, a thing (process or object) can be defined and used in the model you are working on, in which

case it is Privately Exposed, or it can be defined or used in another model, in which case it is Publicly
Exposed. By exposing a thing, you declare that this thing is suitable for reuse by the same system model

(in case of private exposure) or by other system models (in case of public exposure).

To expose a thing, simply right-click on it and choose Expose. You can now select whether you want to

expose this thing publicly (for public use in other models) or privately (for private use in this model). You
may expose a thing for both public and private use. This may be handy if you plan to continue modeling

off-line. A corresponding label (see מקור ההפניה לא נמצא! שגיאה.) will appear after its exposing. You may need
to click anywhere in order for the label to appear. Privately Expose things will be added to the Exposed

Things List immediately. Publicly Exposed things will be added to the Exposed Things List the next time
you commit the model to the repository.

 23

Before exposing a thing, make sure it is ready for exposure. For a process, make sure that all the objects
which are needed for its operation exist in their proper state. Those things, which are often referred to as

the signature or the program's API (Application Program Interface), will be validated later, when used in
other models. Note that when exposing an object you actually expose its entire structure. This means that

all its parts and attribute objects can be used by other models together with the parent object.

A C T I O N S U M M A R Y

Right-click the things  select Publicly or Privately Expose  save model  commit

13. Exposing Things while Being Off-line

When you work offline, only Privately Exposed Things are available for reuse. You may also expose
things privately while being offline. Note that for Privately Exposes things to work, the file must be saved

in one of your Working Copy directories and marked as Added even if it has not yet been committed. If
you are working offline, remember to save the file in this location and perform Add before you try to

expose any thing in the model.

A C T I O N S U M M A R Y

New file when off-line  save the file in a Working Copy directory  in the Models Tab right-click on

the file  Select Add  Right-click the things>select Expose Privately

If the file is already saved in this location and added then just Right-click the things  select Expose

Privately

14. Reusing a Thing

14.1 Selecting and Using an Exposed Thing

To reuse an exposed thing, select the exposed thing you wish to reuse from the Exposed Things

List according to its name and description. After selecting the thing you add it to your model by
clicking Use at the bottom grid, or right-click on the thing in the grid and select Use. If you want

to add a thing inside an in-zoomed process, mark the process at the OPD in which the process is
in-zoomed before choosing Use. You can use as many successors of the thing as you like by

clicking Use again. After Using a thing, Save the model in order for your selection to be registered.
Note that reused things cannot be in-zoomed or unfolded, as they are constrained by their parent

thing.

A C T I O N S U M M A R Y

Bottom Grid > mark a row > Use

Bottom Grid > right-click on a row > select Use

 24

14.2 Setting the Interface or Structure of a Reused Thing

As mentioned, programs, tables, routines, and any other subsystem or procedure have an eco-
system in which they can operate and be reused. The required interface or available structure is

determined by the model of the exposed thing. When reusing a Publicly or Privately Exposed
thing, you must make sure that you do it correctly.

In order to ensure that a Publicly or Privately exposed thing is reused correctly, its interfaces or
structure must be in line with Exposed thing. As explained below, this is exactly what OPCAT’s

Interface Advisor is designed to do. Note that after the parts or interface defined by the exposed
thing are in place, you may add your own parts or additional interfaces. This may be handy when

defining tables. It is less practical when using a program API where interfaces you add may not be
usable by the program you have used without changing its internals.

14.3 Connected Vs. Disconnected Interface or Structure

An exposed thing’s signature (interface and/or structure) is defined in its source model. When

using the exposed thing, you may want to enforce this signature. To do this, when using the
Advisor, select Add Connected. If you would like to define your own signature using the one

from the source model as draft, select Add Not Connected. In case you are not sure, we
recommend adding the thing as connected.

14.4 Setting a Reused Process Interface with interface Advisor

The Interface Advisor helps you set the reused process interface. Always add interface things to
a reused process via the Interface Advisor! After fetching an Exposed process via Reuse, right-

click on the process and select Interface Advisor. The Advisor will then present at the bottom
grid the list of missing interface things (which you can think of as missing parameters) and suggest

adding them in order to complete the interface. You must select them one by one. You can then
select the Interface Advisor again. Each interface item which was added is marked at the list.

Continue this operation until there are no more unmarked things in the list. You may add each
interface item as either connected or not connected. Note that you must be in the OPD where

you would like to add the interface. The Interface Advisor works for Processes as it does for
objects, although for objects it may be less practical.

The Interface Advisor works for Publicly and Privately Used things. The Interface Advisor for
Publicly Used things is available only when you are online and have logged in to the Repository.

If the Interface Advisor appears empty for Publicly Used things, make sure that you are online
and logged in.

A C T I O N S U M M A R Y

Right-click on a Used process  select Interface Advisor  at the bottom grid select the thing

you want to add  click Add Connected or Add Disconnected

 25

14.5 Reusing Parts and Attributes of a Reused Object with Properties

Advisor

A thing may be composed of or defined by one or more other reused things which, in turn, may
be composed of or defined by other reused things. Each thing can be defined in a separate model.

This means that the thing may be combined of things from several models. Since the case for
processes is less practical, it is not enabled in INSIGHT 4.0.

Exposing an object in OPCAT makes all its successors available for reuse. To do this, select a
Publicly or Privately Reused object and select Properties Advisor. The successor objects of the

Reused object will be presented at the bottom grid. Select only the ones you are going to use in
your model. You can add each new successor object as either connected or not connected. If

you would like to use the definitions of the child object you are adding via the Properties
Advisor, add the thing as connected. Note that Properties does not include things that are

inherited from the Exposed object (i.e., connected with a Generalization-Specialization relation).
Also note that you must be in the OPD where you would like to add the property.

A C T I O N S U M M A R Y

Right-click on a Reused process  select Properties Advisor  at the bottom grid select the

thing you want to add  click Add connected or Add not connected

15. Changing a Reused Thing

Reuse of an Exposed Thing by other programs creates a dependency between the models or
programs (in the case of public reuse) or between different parts of the same model or program

(in the case of private reuse). Therefore, changing an exposed thing that is already being reused
must be carefully managed. After an Exposed thing is reused by other models, it can no longer be

changed without taking into consideration the possible impact on other models that reuse it.

According to this principle, once an exposed thing has been reused by another model, you cannot

change it until all the users of the exposed thing have ―released‖ it. You may make local changes,
but you will not be able to commit your changes until everyone else have released this exposed

thing.

15.1 Disabled Changes to a Used Thing

The following changes to a Publicly Exposed thing which is reused are disabled, i.e., the model's

file cannot be committed, until the thing has been released:

o For a process – any change to a procedural link connected to this process.

o For an object – any change to a structural relation connected to this object, including addition
of new parts and attributes, and any change to the type of the object.

 26

o Thing – Deleting an exposed thing or its interface is disabled (even locally) until that thing has
been released.

Except for deletion and Private Un-Expose, OPCAT will allow you to make the above-
mentioned changes to Privately Exposed things that are reused after providing a warning

message. Deletion of Privately Exposed things is disabled. Private Un-expose can be done
locally but would prevent you from committing the file until the successor is released.

15.2 Enabled Changes to a Reused Exposed Thing

 You can make the following changes to an Exposed thing without the need to release it:

o For a process – Change the way an Exposed process operates, as specified by its sub-

processes. You should still notify other users, as explained below. However, OPCAT does
not prevent you from committing such changes.

o For an object – Change of a procedural link to an Exposed object. For example, if the object
Table A is exposed and reused, and it is updated by the process A Updating, i.e., the two

things are connected with an effect link, you may remove this link and link Table A to another
process, New A Updating without the need to release Table A.

o For an Exposed thing – Update the information presented to other users who consider
reusing this Exposed thing. To do this, right-click on the thing, select Expose and then select

Update Exposure Information.

o For a thing – Change the name of a thing or its description.

o For an appearance – if you created few appearances for the same Publicly or Privately
exposed thing by using Copy, you may delete all the appearances except for the original

appearance.

15.3 Changing an Exposed Thing

If you want to change an exposed thing for which release is required, follow the steps described in
the next sections.

15.3.1 Make Changes Locally

First, make sure you committed any other changes you made before changing the exposed
thing. Make changes to the exposed thing and save them locally. Once you are done changing

the exposed thing, you will need it to be released by owners of the other models in which the
thing is reused before you will be able to commit the model.

15.3.2 Request Release

Check who is reusing the Exposed thing you need to be released by clicking the Exposed

Things List icon, right-clicking on the Exposed thing you changed and select Reports  Show

Successors, or Local Successors reports, as applicable. You can then see if there is any local or
global reuse of this thing. If the thing is not reused anywhere, you can proceed to commit the

 27

model and skip the rest of the process. If the reuse is only private (reuse in your own model)
you need to release the exposed thing in you model, as explained in the next section. If other

models are reusing this thing, then you need the Exposed thing to be released at each model in
which it is used.

You can notify other users of the expected change by using OPCAT Messages, or any other
organizational communication means.

To use OPCAT Messages, right-click on the exposed thing in the Exposed Things List and
select Messages. You are now presented with two options: Interface Needs Change Request

or Non-Interface Changes. Only interface changes require that the Exposed thing be released.
However, you should notify other users also of non-interface changes, although OPCAT does

not prevent you from committing the changes without getting other users to release the
Exposed thing.

Use the Interfaces Needs Changes option to notify users that they are requested to release the
exposed thing, so you can commit the changes to the interface. Every user that opens OPCAT

will now see the messages at the Messages Console. You can send a message requesting to
release an Exposed thing even if you are not currently working on the model that contains the

Exposed thing. You can also send a message to a specific model. To do this, right-click on a
thing in the Exposed Things List and select Reports, then right-click again on the model which

you want to send message to and click Messages.

15.3.3 Releasing an Exposed Thing (by the Exposer)

This section is intended for users who use a Publicly Exposed thing which is about to be

changed or use a Privately Exposed thing which needs to be changed in the model.

If you are using Publicly Exposed things, check the Messages Console for information about

planned changes. At the Message Console, you will see messages about things that were
exposed and un-exposed.

To release an Exposed thing, right-click the Exposed thing, select Expose and then select
Release Publicly Exposed or Release Privately Expose, as applicable. Note that no roll-back is

available for this action. Now save, and if the thing was Publically Released, then also commit
the model. Once this is done, the Exposed thing can be changed.

A C T I O N S U M M A R Y

Right-click on a reused thing  select Expose  Release Publicly Exposed or Release

Privately Exposed  Save  Commit

15.3.4 Commit the Changes to Exposed Thing (by the author)

In order to know whether a thing was released by the owners of all the models in which that

thing is privately or publicly reused, you can check the Message Console or the reports available
by right-clicking on the thing in the Exposed Things List. When the Exposed thing is released

 28

by the owners, you can commit the model. Note that you cannot delete an Exposed thing or
the interface of an Exposed thing even locally until it is released. Therefore, if your changes

include deletion of exposed thing or interface of an exposed thing, you should now open the
model and delete the items before committing.

15.3.5 Reuse the Modified Exposed Thing Again

When you Release a thing, you allow the owner of the model where the Parent thing resides
to change it. The thing itself will remain in your model, it but will no longer be connected to

the exposed thing. However, that thing’s interface will remain in your model as is, i.e., if any
part of it was connected, it will remain connected even though the thing itself became

disconnected.

Once the exposed thing was changed by its owner, you can reuse it again. For the sake of

caution, once a thing was released, it can no longer be ―re-reused‖. The only way to make a
released thing reusable again is to add it again from the Exposed Things List. After adding the

Exposed thing at the right place, use the Interface or Properties Advisor to reconnect the
Exposed thing to its interface. The Advisor works according to the current signature (interface

or structure) of the exposed thing, so any changes made since you released the thing will be
recommended by the Advisor. After completing this, you can delete the previous Exposed

thing and interface things which are no longer linked.

A C T I O N S U M M A R Y

Click the Exposed Things List  Select the thing you want to use  press Use  Right click

on the thing in the model  select Advisor  add the interfaces  delete the original thing
and interface

15.4 SAVE AS

―Save As‖ seems like a simple operation, but the consequences of this operation are the creation of
an additional version of the same thing, in which all your previous usage and exposure will be

eliminated and you will have to recreate the dependencies.

Templates

Templates are the organization’s best practices for modeling proven frequently-used systems, modules,
programs or expressions. Using templates ensures compliance with a specific way of design which

becomes the organization’s policy or guidelines. Templates that were correctly prepared and thoroughly
tested can save you plenty of time. Only people with special expert privileges can save templates to the

reserved Templates directory in your organizational repository.

 29

16. Principles for Creating an Organizational Template

When you create a template, remember that it should serve as a skeleton for different models. The

template model should be as simple as possible. Add only things which are relevant as a skeleton. Do not
add things which are specific, unless the template is designed to handle this specific situation. Do not in-

zoom unless this is necessary. Make sure that the template is compatible with OPM rules.

Templates are divided into two types: Startup templates and Constructs. A Startup template provides

you with a ready-made model to start from. A Construct determines how to model a specific operation
or structure in OPM. If you are preparing a Construct Template of a process, make sure that the process

you plan to use as Construct exists in exactly one OPD. If you have the necessary privileges, once your
Startup template or Construct template model is ready, all you need to do is commit the model to the

Templates directory.

17. Starting a New Model from a Template

To start a new model using a template, simply select System  New. You will be presented with a popup

window asking you to select New or From Template. Select From Template. A drop-down menu
appears, listing all the organizational templates that are available for you to use. Select a template and click

OK. You can now edit the template locally. The template model file is saved in a temporary library, so
before you start editing it, it is recommended that you save it in your local Working Copy environment

using Save As.

A C T I O N S U M M A R Y

System  New  select From Template  OK  Save As

18. Using Constructs in an Existing Model

If you design a program or a model of a system that includes a Construct, such as an operation or a data
structure, which is commonly used in your organization, that Construct has to be made available in the

Templates directory. You can then use this Construct in your model and validate that you used it
correctly. To use a Construct, open the Templates directory in your Working Copy environment. This

directory is automatically synchronized with the server and includes the most updated Templates and
Constructs.

To use a Construct from a model, click the Models tab on the left pane, right-click on the model which
contains the thing you want to have as a construct, and choose Add as Template. The model is now

added into the Templates tab. Click the Templates tab, then click on the key icon next to the model
containing the thing in which you are interested. You will see all the things in the model. Right-click the

thing you want to use as a construct in your model, and choose Insert from the popup menu. The thing
you have chosen is now added to your model. If you want to add a thing inside an in-zoomed process,

mark the process at the in-zoom OPD before choosing Insert.

 30

You can use any thing in the model which exists in the repository as a Construct. In order to do so, right
click on the model in the Models tab and select Add Template. The selected model will appear in the

Templates tab. This model will be available as template only if the template exists in the Working Copy
in the computer where you work on the model. If you use a different computer, you must check out the

local template as well. It is therefore recommended that you do not add Constructs that are not located in
your Working Copy and synchronized with the repository.

A C T I O N S U M M A R Y

Models tab  open Templates directory  right click a model  select Add as Template  go to

Templates tab  press the key  chose the construct you want to use  right-click and select Insert

19. Adding the Entire Construct

Just like using an Exposed thing, when using a Construct you need to make sure that the entire Construct
was added. To do this, use the Interface Advisor (for processes) or Properties Advisor (for objects) as

explained in the section ―Setting Interface or Structure of Reused Thing‖ above. The Advisor will
automatically refer to the template model as the source model.

 A C T I O N S U M M A R Y

See ―Setting the Interface or Structure of a Used Thing‖ above

 31

Categories

he model describes some aspect of our system. There may be additional information we would

like to attach to certain model elements. The Categories Module is designed for this purpose.
Additional information may be release version for each element, its status (set, modified, to be

modified), etc. Another common option is connecting requirements to model elements. The
categories and their values are set by your administrator. Any category and value can be set to address the

organization's needs. Once the Categories are set and connected, your administrator can view which
models are connected to which elements. For example, you can view which source files are going to be

changed at the next version.

20. Applying Categories to your model

Once you logged in and opened a model, all the organizational categories are available. You can see the

available categories by clicking the Show Categories icon, , on the top bar. The categories will be
opened in tabs at the grid at the bottom of OPS.

20.1 Connecting Model Elements to Categories Values

You can now connect any model element or elements to any Category value or values. This is many-to-
many connectivity. To do so, click on the model element you want to connect, then click on the line in

the grid in which the Category value appears and then press the Connect button found on the right side.
Once connected, you will see the model element in the grid at the ―things‖ column.

A C T I O N S U M M A R Y

Press on the top bar  select Category tab  select value by click  select model element by

click press Connect

20.2 Disconnecting Model element and Category Value

Any user that has read-write authorization for a file may connect and disconnect Category values to
model entities. To disconnect a model entity and Category value, select the model entity and then select

the line in the grid for the connected Category Value. Now click ―Disconnect‖. Note that disconnecting a
Category value is a meaningful event. Therefore, there is no option to disconnect all. Rather, you should

think about what you are doing and carefully select the model entity and Category value. Having said that,
you may connect or disconnect few model entities found on the same OPD by using the shift key with

your mouse. You may also connect few Category values to an entity by using the shift key to multiply
select few lines at the grid.

T

 32

A C T I O N S U M M A R Y

Press on top bar  select Category tab  select value by click  select the model element you

want to disconnect by clicking on it  click Disconnect

21. Analyzing relationship between Categories

21.1 Coloring

OPS enables you to understand which Category values are connected to which model entities

by coloring the connected model entities according to their value. To color model entities
according to a certain Category, right-click on an empty space in your model and then select

Meta Coloring. You will now see all the available Categories. Select any of them to color your
model according to this Category. If you want to remove the coloring, just select default. Note

that the coloring is removed whenever you save your model.

A C T I O N S U M M A R Y

Right click on empty space in your model  Meta Coloring  Select Category

21.2 Analyze

Analyze allows you to understand the relationship between different Category values
connected to different model entities. When this information is reflected at the model, you can

inspect how internal model or program dependencies correlate with external dependencies. For
example, you can see that a particular piece of code, which is scheduled for this release,

depends on some other piece, which is scheduled only for future releases. To analyze a
Category value, press the Categories icon at the top bar. Then, at the grid, select the Category

and Category value you would like to analyze. Now, right click on this value and select
Analyze. A new tab will be opened, listing all the things connected to this Category value, the

model elements to which this model elements are connected in terms of OPM, and any
Category value to which the other model element is connected. The last columns are dedicated

to the OPM link between the two model entities

A C T I O N S U M M A R Y

Press on top bar  select Category tab  right click on a value  select Analyze

22. Off-line and on-line work

In principle, you may connect Category values while working online or offline. Note, however, that if a
Category was changed by your administrator when you were offline, you will only see the effect of this

change when being back online.

 33

23. Reports

You can see which category values are connected to model entities within your models by simply double-

clicking on the row where this value appears. If you click on each entity at the results tab, you will be
directed to the exact location in the model were this entity appears.

--To be implemented prior to release—

If you wish to understand which Category values are in use at which model, use Vision, where such

reports are available as part of the textual reports.

24. Changing Categories by Administrators

Categories may be changed using the Admin Console. Explanation about this process can be found in the
INSIGHT Administrator Guide. From a user's perspective, you should be aware that the administrator

can change the value names, add values and delete values or even an entire category. Before doing so, the
administrator is advised to use the Validation tool found at the Admin Console, which informs the

administrator which models are connected to any Category value the administrator is about to change.
Nevertheless, the administrator may change categories even if they are used in a model. Such changes will

be reflected in the model the next time you open the model. If the Category value is deleted, it will then
be deleted from your model along with any connections you may have made.

 34

Troubleshooting and FAQ's

1. While trying to commit, the File Console notifies ―transmitting file…‖ but does not complete the

action.

In most cases the reason is that the directory or file was deleted from the repository after it had

been checked out to your local directory. To verify that this is the reason, go to the Admin
Console, where it should say ―Path does not exist‖. If you still want to check out this file or

directory into the repository, you can create a directory with the same name at the repository,
check it out to your local copy and then copy the files to the newly created directory in your local

copy. Then you will need to add the files and commit them again.

2. I exposed a thing, but it does not appear in the Exposed things list.

Make sure that you committed the file to the directory after exposing it. If this does not help,
verify that you exposed it for public use.

3. I am trying to reuse an exposed thing, but when I click Use, I get the error message ―Cannot
Insert Exposed Thing into selected.‖

Check that no object or process is selected in your model. If it is selected, the Use mechanism
thinks you are trying to add something inside the selected thing, which is not allowed in OPCAT.

To solve this, unselect the thing and click Use again

4. I cannot delete files from the repository by Delete File in my Models.

Make sure that the files are not locked by another user.

5. I cannot commit a file to the Repository.

There can be several reasons for this:

a. Check that you are online.

b. Make sure that the file is not locked by another user.

c. Check the Admin Console for more information about the reason for failure to commit

the file.

6. Why does the advisor show an empty tab for a Publicly Exposed thing?

 35

The Advisor for Publicly Exposed thing is reading from the repository. In order for it to work,
you must be online and logged-in.

7. I cannot find an exposed thing in the exposed things list.

a. Check that the System Name is set as you expect it to be.

