
OPCAT Version 3

Getting Started Guide

March 2009

 2

Table of Contents

 3

1. Intrudction to the OPCAT Guide

The purpose of this Guide is to help the systems engineer who is an OPCAT user to start

modeling with OPCAT 3.0. The Guide briefly presents OPM – Object-Process Methodology,

which is OPCT’s underlying language and modeling approach. OPM also serves as the basis

for OPCAT advanced features. After reading the guide the user is encouraged to continue to

the advanced lessons which could be obtained by contacting us at consulting@opcat.com.

This Guide is divided into sections. Each section describes another aspect of the OPM

language or the OPM-based modeling environment OPCAT software product and contains a

summary at the end.

2. Brief Introduction to OPM

Object Process Methodology (OPM) is a holistic approach for

conceptual modeling of complex systems. A complete

treatment of OPM can be found in the OPM book. Below is a

brief introduction of OPM to get you started.

The OPM model integrates the functional, structural, and

behavioral aspects of a system in a single, unified view,

expressed bi-modally in equivalent graphics and text with

built-in refinement-abstraction mechanism.

Two semantically equivalent modalities, one graphic and the

other textual, jointly express the same OPM model. A set of

inter-related hierarchically organized Object-Process Diagrams

(OPDs), showing portions of the system at various levels of

detail, constitute the graphical, visual OPM formalism. The OPM

ontology comprises entities and links. Each OPM element (entity or link) is denoted in an

OPD by a symbol, and the OPD syntax specifies correct and consistent ways by which

entities can be connected via structural and procedural links, such that each legal entity-link-

entity combination bears specific, unambiguous semantics (see Figure 1 for example). There

are three different types of entities: objects, processes (collectively referred to as "things"),

and states. These entities are shown in Figure 1. Objects are the (physical or informatical)

Figure 1: An Object-Process
Diagram (OPD) showing the

three OPM entities: Object,
Process, and State, and the

input/output procedural link

pair, which expresses that
Processing changes Object

from State 1 to State 2.

mailto:consulting@opcat.com
http://www.amazon.com/Object-Process-Methodology-Dov-Dori/dp/3540654712

 4

things in the system that exist, and if they are stateful (i.e., have states), then at any point

in time they are at some state or in transition between states. Processes are the things in

the system that transform objects: they generate and consume objects, or affect stateful

objects by changing their state.

Links can be structural or procedural. Structural links express static, time-independent

relations between pairs of entities. The four fundamental structural relations are

aggregation-participation, generalization-specialization, exhibition-characterization, and

classification-instantiation. General tagged structural links provide for creating additional

"user-defined" links with specified semantics. Procedural links connect processes with

objects or object states to describe the behavior of a system. System behavior is manifested

in three ways: (1) a processes can transform (generate, consume, or change the state of)

one or more objects; (2) an object can enable one or more processes without being

transformed by them, in which case it acts as an agent (if it is human) or an instrument;

and (3) an object can trigger an event that invokes a process if some conditions are met.

Accordingly, a procedural link can be a transformation link, an enabling link, or an event

link. A transformation link expresses object transformation, i.e., object consumption,

generation, or state change. Figure 1 shows a pair of transformation links, the input/output

link. It expresses in OPL that Processing changes Object from State 1 to State 2. An enabling

(agent or instrument) link expresses the need for a (possibly state-specified) object to be

present in order for the enabled process to occur. The enabled process does not transform

the enabling object. An event link connects a triggering entity (object, process, or state)

with a process that it invokes.

The System Diagram, SD, is the topmost diagram in a model. It presents the most abstract

view of the system, typically showing a single process as the main function of the system,

along with the most significant objects that enable it and the ones that are transformed by

it. The further from the root the OPD is, the more detailed it is. Each OPD, except for the SD,

is obtained by refinement—in-zooming or unfolding—of a thing (object or process) in its

ancestor OPD. This refined thing is described with additional details. The abstraction-

refinement mechanism ensures that the context of a thing at any detail level is never lost

and the "big picture" is maintained at all times.

A new thing (object or process) can be presented in any OPD as a refineable (part,

specialization, feature, or instance) of a thing at a higher abstraction level (a more abstract

OPD). It is sufficient for some detail to appear once in some OPD for it to be true for the

system in general even though it is not shown in any other OPD. Accordingly, copies of a

 5

thing can appear in other diagrams, where some or all the details (such as object states or

thing relations) that are unimportant in the context of a particular diagram need not be

shown.

The Object-Process Language (OPL) is the textual counterpart modality of the graphical OPD

set. OPL is a dual-purpose language, oriented towards humans as well as machines. Catering

to human needs, OPL is designed as a subset of English, which serves domain experts and

system architects, jointly engaged in modeling a complex system. Every OPD construct is

expressed by a semantically equivalent OPL sentence or phrase that is generated

automatically by OPCAT in response to the user's input. According to the modality principle

of the cognitive theory of multimodal learning, this dual graphic/text representation of the

OPM model increases the human processing capability. It has indeed been our experience

that humans enhance their understanding of the model as they conveniently draw upon the

graphic and/or the textual model representation to complement what they missed in the

other modality.

A major problem with most graphic modeling approaches is their scalability: As the system

complexity increases, the graphic model becomes cluttered with symbols and links that

connect them. The limited channel capacity is a cognitive principle which states that there is

an upper limit on the amount of detail a human can process before being overwhelmed. This

principle is addressed by OPM and implemented in OPCAT with three abstraction/refinement

mechanisms. These enable complexity management by providing for the creation of a set of

interrelated OPDs (along with their corresponding OPL paragraphs) that are limited in size,

thereby avoiding information overload and enabling comfortable human cognitive

processing. The three refinement/abstraction mechanisms are: (1) unfolding/folding, which

is used for refining/abstracting the structural hierarchy of a thing and is applied by default to

objects; (2) in-zooming/out-zooming, which exposes/hides the inner details of a thing within

its frame and is applied primarily to processes; and (3) state expressing/suppressing, which

exposes/hides the states of an object.

The software environment embodied in the OPCAT 3 product supports OPM-based system

development, evolution, lifecycle engineering, and lifecycle management. This software

package implements the bimodal expression of the OPM model along with many new model-

based capabilities. In addition to OPM-based systems modeling, the OPCAT platform

supports such features as requirements engineering, information layers management, model

repository, simulation and validation of the model, and automatic document generation and

management.

 6

OPM Basics: A Quick Summary

 OPM is a modeling language based on the paradigm that views processes and objects

as equally important in the system model.

 OPM uses Objects and Processes in order to model the structural and behavioral

aspects of a system.

 Objects are things that exist over time. Object can be stateful (i.e., have states).

 Processes are things that transform Objects by creating them, destroying them, or

changing their states.

 Procedural links connect processes to objects to express these transformations.

 Structural relations connect objects to express static, long-term between them.

3. Starting to Model with OPCAT

The OnStar System, specified in Annex A in free text, is used as a running example

throughout this guide.

A detailed, step-by-step OPM-based model construction of the OnStar System is used to

explain how to do the modeling with OPCAT by describing almost each mouse-click, so you,

as a new user, can closely follow each step and reproduce the model as you proceed with

following the model while it is being constructed in the pages below.

Install OPCAT

OPCAT 3 is standalone Java based software. A trial and academic only version is available.

Note that Java 6JRE is required before installing OPCAT. Press Setup file and install OPCAT.

Note that you are required to select directory in which OPCAT models will be saved. You are

also required to restart your computer after installation.

Open a New System

Double clicking the green OPCAT icon application, a blank screen is opened, as shown in

Figure 2.

https://www.opcat.com/downloads/trial/
http://java.sun.com/javase/downloads/index.jsp

 7

Figure 2. A blank OPCAT opening screen

Clicking System -> New we get the New System Properties dialog box shown in Figure

3.

Fill in the details and click OK. At this point you may also want to save the system in a

designated folder.

Next we start modeling the system in the System Diagram.

Figure 3. The New System Properties dialog box

The System Diagram (SD)

The System Diagram (SD) is the first, top-level Object-Process Diagram (OPD) of our

system. SD needs to contain one central process – an ellipse (oval) which expresses clearly

the main system's function – what it is designed to do. The name of this process is a 2-3

word phrase such as ―Laundry Washing‖, ―Border Securing‖, or ―Space Exploring‖.

 8

In addition, SD shall contain the beneficiary – the entity that benefits from the system, such

as ―Household‖, ―Citizens Group‖, or ―Scientists Group‖. SD shall include in addition also the

main, top-level objects that are consumed (inputs), created (outputs), and/or affected

(those whose state changed) by the main process – the system’s top-level function.

Additional possible objects include the main human and non-human enablers of the system,

and the objects which interact with our system (called environmental, as opposed to

systemic).

Define the System’s Main Function

We now start to actually model the OnStar system. We do this by drawing model elements –

processes, objects, and links – on the graphic screen, the top right pane marked as SD, the

System Diagram. OPL is the textual equivalent of the OPD. As we model, we inspect the

translation in real-time of our graphic editing into OPL – Object-Process Language – to make

sure we have done the right thing.

The first thing we need to do when modeling a new system is to define the system's

major function. This is going to be the central process which we will draw in the center of

the SD. Contemplating about the main function of OnStar we conclude that the major

function of the OnStar system is Driver Rescuing.

The OPM element symbols are depicted in the OPM symbols bar at the bottom of the screen.

Although the number of elements in OPM is very small, there is no need to memorize them

since OPCAT spells them out for you (see Figure 4). The symbol set is divided into three

groups:

1. On the left: The three OPM entities

a. Object

b. State (which is always inside an object)

c. Process

2. In the middle: The group of structural relations – relations between pairs of objects

3. On the right: The group of procedural links – links between a process and an object

or a state inside that object.

 9

Figure 4. OPCAT Screen after opening the new OnStar System model

Sliding the mouse over the OPM symbols bar presented in the bottom toolbox shows their

name. In Figure 4 the mouse is over the ellipse and we see that the ellipse is the symbol for

a process.

Click on the process icon. You will get the dialog window shown in Figure 5. Type the process

name. Since this process is physical, click on the physical essence radio button and click

OK.

Figure 5. The Process Properties dialog box

 10

Figure 6. Driver Rescuing, the main function of the system, has been inserted as a physical process.
First OPL sentence shows up.

You should get the process as shown in Figure 6. Note that the process is shaded to denote

that its essence attribute is physical (the default essence of OPM things – processes as

well as objects – is informatical).

Note also that the following OPL sentence appeared in the bottom right pane:

Driver Rescuing is physical.

To help distinguishing between objects and processes, the process name in the text is in

blue, as it is in the OPD. Analogously, objects will be green in both the OPD and the OPL.

OPL reserved words are in black.

Defining and linking the system's main objects

Having defined the major system function, we now turn to depicting the main objects in the

system. We need to think first about who is the beneficiary of the system, i.e., who is the

person (or group or people) who gets value from using the OnStar system. Obviously, it is

the driver, so we insert Driver as a physical object. Since the driver is not part of the

system, but interacts with it, its affiliation is environment rather than system, so we

mark both radio buttons and the OPL sentence gets automatically updated as follows:

Driver is environmental and physical.

 11

Another vital object in the mode is, of course, the OnStar System, which we also add as a

physical object. Figure 7 shows SD, the System Diagram, after the objects Driver and

OnStar System were added.

Figure 7. SD after adding the two objects

As the beneficiary, Driver is affected by the Driver Rescuing process. In OPM, when an

object is affected it means that the state of that object (Driver in our case) is changed as a

result of Driver Rescuing acting on it from some state (the input state, i.e., the state of

Driver at the beginning of the Driver Rescuing process) to another state (the output

state).

In order to express this, we shall use the effect link. Recall that since this link is between an

object and a process, it belongs to the group of procedural links. Indeed, it is the

bidirectional arrow depicted fourth from the left within the group.

To create the effect link, clink on it first. Then click on the process and drag it from the

process to the object. The result, shown in Figure 8 is expressed in a new OPL sentence:

Driver Rescuing affects Driver.

 12

Figure 8. SD after linking Driver and Driver Rescuing with an effect link

The semantics of this OPL sentence is that the Driver's state is changed by the Driver

Rescuing process, but at this abstract level of detail, the states themselves are not

specified, so the effect link abstracts this expression – it is a generalization of the detailed

description. At a later stage we will describe the relationship between the Driver and

Driver Rescuing process in more details to show the input and output states of Driver.

Next, in Figure 9, the OnStar System is added as an instrument to the Driver Rescuing

process. This is done by clicking on the instrument link button – the line with the white circle

(white lollipop) – and dragging it from the OnStar System – the instrument – to the Driver

Rescuing process. The sentence added as a result is:

Driver Rescuing requires OnStar System.

Reading the OnStar description we find that

"At its most basic, OnStar consists of four different systems: cellular phone,

voice recognition, GPS and vehicle telemetry."

We now wish to model this sentence, which describes the four main parts of the OnStar

System. Adding these four parts is shown in Figure 9.

The parts are added one by one. We first click on the Object symbol button, then on the spot

on the screen where we want it to be located. The location of each object is determined by

where we click on the screen after selecting the Object button. Naturally, the objects are

therefore not quite aligned, and we may wish to align them.

http://auto.howstuffworks.com/biometrics4.htm
http://auto.howstuffworks.com/gps.htm

 13

Figure 9. Adding the four parts of OnStar System

Figure 10. Marking the four parts of OnStar System for horizontal alignment

 14

Marking the four parts of OnStar System for horizontal alignment is shown in Figure 9. We

mark all at once by clicking and dragging the mouse to include all the things we wish to

mark within the dotted area. The marking is shown by small white squares on each object.

Figure 11. Top alignment of the four parts of OnStar System

 15

Figure 12. The four parts of OnStar System after top alignment

Right Clicking on one of the four marked objects brings the pop-up menu shown in Figure 11,

and clicking "Align" brings a sub-menu, from which we select "Top". The result of the aligned

objects is shown in Figure 12.

At this point, we wish to denote the fact that all these four objects are part of the OnStar

System. This is an opportunity to introduce in the next section the set of OPM symbols

which appear at the bottom of the screen.

Quick Summary

 Using a top-down approach, we start off by modeling the main function of the system

as the central process in SD - the System Diagram, which is the first OPD in our

model.

 In SD we establish the main function of the system and the objects involved in this

process.

 Things – Objects or Processes – have an Essence attribute and an Affiliation

attribute.

 The default Essence is informatical and the default Affiliation is systemic.

 Informatical things are for example file, command, message, and algorithm. Things

which are not Informatical shall be marked as physical.

 16

 Things which are not systemic – not part of the system (but interact with it) – shall

be marked as environmental.

 Environmental objects interact with our system but we, as system architects and

designers, have no influence on their design.

 The system can affect environmental objects but it is not responsible for creating

them.

 We add the main objects in the system, denoting, if needed, their Essence as

physical and their Affiliation as environmental.

 Each part of the system which will be modeled later in more detailed OPDs is some

refinement (specification of parts, specializations, or features) of the Things in the

SD.

 17

4. The OPM symbols

The OPM symbol buttons at the bottom of the screen are divided into three groups. The next

three figures present in tabular form each one of the three symbol groups.

Entities

The group on the left is the group of the entities: Object, state, and process.

Symbol
Name:

Definition
OPL

Allowed

Source-to-

Destination

connections

Semantics/ Effect

on the system

flow/ Comments

T
h
in

g
s

Object A:

A thing that exists

A is physical [and

environmental].

A is informatical and

systemic by default.

Process B:

A thing that

transforms

(generates,

consumes, or

changes the state

of an) object.

B is physical [and

environmental].

B is informatical and

systemic by default.

State:

A situation of an

object.

A is s1.

A can be s1 or s2.

A can be s1, s2, or

s3.

Always within an

object.

Figure 13. The OPM entities

 18

Structural Links

In the middle is the group of the structural links: four triangles and two arrows with open

heads.

The structural links denote static, long-term relations that have no relation to the time

dimension and hold true throughout the system's existence between an object and other

objects or between a process and other processes.

Symbol
Name:

Definition
OPL

Allowed

Source-to-

Destination

connections

Semantics/ Effect

on the system

flow/ Comments

Aggregation-

Participation
A consist of B.

Object-Object

Process- Process
Whole -Part

Exhibition-

Characterization
A exhibits B.

Object-Object

Object-Process

Process-Object

Process- Process

Generalization-

Specialization

B is an A.

(objects)

B is A. (processes)

Object-Object

Process- Process

Classification-

Instantiation

B is an instance of

A.

Object-Object

Process- Process

Tagged structural

links:

Unidirectional

Bidirectional

According to text

added by user

Object-Object

Process- Process

Describes structural

information.

Figure 14. The structural links

 19

 Procedural Links

The OPM symbols grouped on the left are the procedural links: four triangles and two arrows

with open heads.

The procedural links denote dynamic, transient relations that have everything to do with the

time dimension. Opposite to the structural links, they connect an object and a process but

not an object to another object.

Symbol
Name:

Definition
OPL

Allowed

Source-to-

Destination

connections

Semantics/ Effect on the

system flow/ Comments

Agent Link A handles B.

Object (A) to

Process (B)

Denotes a human operator.

Activating the link triggers

the process B.

Instrument

Link

B requires A.

Object (A) to

Process (B)

Wait until A is generated and

exists.

Wait until A is at state s1.
B requires s1 A.

State (s1) to

Process (B)

Condition

Link

B occurs if A

exists.

Object (A) to

Process (B)

Execute if object A exists,

and if not then skip process B

and continue the regular

system flow.

Execute if object A is at state

s1, and if not then skip

process B and continue the

regular system flow.

B occurs if A is

s1.

State (s1) to

Process (B)

 Effect Link B affects A.
Object (A) to

Process (B)

Used when details of the

effect are not necessary or

will be add at a lower level

(also created when states

lined to a process with an

input-output pair are hidden-

suppressed)

Affect at an high level

signifies at lower levels –

 State changes

 Consumption and later

generation

 20

Symbol
Name:

Definition
OPL

Allowed

Source-to-

Destination

connections

Semantics/ Effect

on the system

flow/ Comments

Consumption

Link

Result Link

Input-Output

Link Pair

B consumes A.

B yields A.

B consumes s1 A.

B yields s1 A.

B changes A from s1

to s2.

Object to Process

Process to Object

State to Process

Process to State

Process – State

s1 to Process

and Process to

s2.

Process consumes

the object.

Process creates the

object.

Process changes the

state of object.

Invocation Link B invokes C. Process-Process

Execution will proceed
if the triggering failed

(due to failure to fulfill
one or more of the
conditions in the
precondition set).

Instrument

Event Link

A triggers B.

s1 A triggers B.

Object (A) to

Process (B)

State (s1) to

Process (B)

Execution will proceed
if the triggering failed

(due to failure to fulfill
one or more of the
conditions in the
precondition set).
For normal, non-
triggered execution,

the object or state

linked is not required
for the process to take
place.

Consumption

Event Link

A triggers B, which, if

occurs, consumes A.

s1 A triggers B,

which, if occurs,

consumes A.

Object (A) to

Process (B)

State (s1) to

Process (B)

Execution will proceed

if the triggering failed
(due to failure to fulfill
one or more of the
conditions in the
precondition set).
For normal, non-
triggered execution,

the object or state
linked is not required

for the process to take
place.

Figure 15. The procedural links

 21

5. Using Structural Relations
Structural relations are used to model the structure of the system. The most prevalent

structural relation is the Whole-Part relation, denoted as solid, filled-in triangle whose tip is

connected to the whole and whose base—to the parts.

Figure 16. Linking the Cellular Network part of OnStar System to the whole OnStar System

Continuing with our example, to denote the fact that the four marked objects in Figure 16

are parts of OnStar System, click on the solid (black or blue) triangle and then click the

mouse on the whole – the OnStar System – and drag it to one of the parts, e.g., Cellular

Network.

 22

Figure 17. The question asked after linking Cellular Network to the whole OnStar System

Since several objects are marked, a question shown in Figure 17 appears, asking whether

we wish to continue with all the selected objects, i.e., are they too parts of the whole.

Clicking OK will generate the four links in Figure 18. The resulting OPL sentence, shown in

the second line of the OPL pane, is:

OnStar System consists of OnStar Console, Vehicle Comm and Interface Module (VCIM),

Cellular Network, and GPS.

In order to specify that Driver communicates via OnStar Console, we click on the

unidirectional tagged structural link, the fifth button in the middle in the structural links

group, and drag it from Driver to OnStar Console. The result (without the label along the

link) is shown in Figure 19. Inspecting the newly generated OPL sentence we see that it

reads as follows:

Driver relates to OnStar Console.

Since we wish to be more specific, we double click the link we just drew and get the dialog

box in Figure 20. We type "communicates via" in the Tag box, click OK, and the OPL

sentence now changes to: Driver communicates via OnStar Console. This OPL sentence

appears at the last line in Figure 19.

 23

Tagged Structural Links are user-defined and they provide additional information about the

system that cannot be expressed via the OPM predefined structural links.

Figure 18. The four parts of Cellular Network are now linked to the whole OnStar System

Figure 19. Specifying that Driver communicates via OnStar Console

1. Click here to select
unidirectional tagged
structural link

2. Click mouse on
Driver and drag it

to OnStar Console

 24

Figure 20. Inserting the tag "communicates via" in the unidirectional general structural relation

6. Zooming into the main process
At this point the System Diagram, SD, is already quite crowded, but we barely scratched the

surface of specifying the OnStar System. How are we going to keep on modeling while

maintaining the OPD clear and readable?

To the rescue comes the OPM built-in in-zooming mechanism. In-zooming is a refinement

mechanism. It enables starting a new Object-Process Diagram (OPD), in which a thing

(process or object) is copied from the ancestor OPD, and it is blown-up (in-zoomed) in order

to enable specifying its sub-processes within it. To maintain the consistency across the entire

OPD set, while you zoom into a thing and create a new OPD, things that were attached to

that thing directly or indirectly via more abstract in-zooming levels are brought along to the

newly-created OPD.

As Figure 21 shows, we select the main function of our system, the Driver Rescuing

process, and continue refining the specification of the system using SD as the root of the

OPD tree.

1. Type here

the tag box

2. Click OK

 25

Figure 21. Zooming into the Driver Rescuing process

Figure 22. Zooming into the Driver Rescuing process

1. Right-clicking on the
thing to be in-zoomed
opens the pull-down
menu on the right.

2. Select In-Zoom to
create a new OPD in
which Driver Rescuing

is blown-up.

 26

Figure 23. The new OPD titled SD1 – Driver Rescuing in-zoomed, created after zooming into the Driver
Rescuing process

Following the "five plus or minus two" rule related to humans’ limited channel capacity, we

continue refining the system's specification by depicting 3 to 6 subprocesses nested inside

the in-zoomed process, which, in turn can be further in-zoomed into new 3 to 6

subprocesses, and so on, until the level of detail is sufficient for the task at hand.

SD1 should hence describe the 3 to 6 main subprocesses comprising the Driver Rescuing

process by the OnStar system.

For each process we will describe the preconditions and the postconditions of that process.

Both preconditions and postconditions are expressed in terms of the (possibly stateful)

objects that are linked to the process. More details about these additional objects can

possibly be added when we zoom into the sub-subprocesses of each subprocess.

OPDs at lower levels are merely detailed descriptions of OPDs in upper levels. No object can

be depicted in a lower-level OPD unless it or its ancestor (parent in some generation).

Consistency must be maintained between any two OPDs related by a father-son relationship,

2. The OPD tree has been
updated with the new OPD
called SD1.

1. SD1 is the newly
created OPD.

 27

so that overall the entire OPD set is consistent. Additional explanation about this topic is

provided in the Advanced Course Package.

To make a call in the OnStar system, the driver says out-loud a phone number or a

previously stored name associated with a phone number. Modeling this statement presents

us with an opportunity to recommend an effective OPCAT design facility called Insert

Property.

The first subprocess of Driver Rescuing is Call Making. In Figure 24 we add this

subprocess within and at the top of the enclosing Driver Rescuing process.

Figure 24. Call Making is inserted as the first subprocess within the in-zoomed Driver Rescuing process.

Call making requires the Driver and the OnStar Console. In order to express this we need

to bring OnStar Console to this OPD. Since OnStar Console is already connected to the

OnStar System elsewhere, in another OPD, we can use Insert Property to facilitate this

action.

1. Click on
the process
icon

2. Press inside the
Driver Rescuing to
add the process

 28

Figure 25. Adding OnStar Console by using the Insert Property feature

The Insert Property feature is available if the relationship is defined in other OPD or is

inherited. Figure 25 shows how Driver and OnStar System are brought into SD1. It is also

possible to insert a structural relationship which is stated in the model repository. To learn

more about this option please refer to the Advanced Course Package.

Having placed Call Making inside Driver Rescuing, we now wish to indicate that Driver

and OnStar Console are both enablers of the Call Making process. Driver is a human

enabler—an agent, while OnStar Console is a non-human enabler—an instrument. To

denote this, we link Driver to Call Making using an agent link—the solid lollipop—the first

link in the procedural links group. We select it, then click on Driver and drag it to Call

Making. Similarly, we link OnStar Console to Call Making using an instrument link—the

hollow white lollipop—the second link in the procedural links group. We select it, then click

on OnStar Console and drag it to Call Making.

1. Right click on the process icon to
get the pop-up window, then scroll

to Insert Property

2. Select Direct and form the
list of things that shows up
select the thing you want to
be inserted

 29

Figure 26. Connecting Call Making to the agent Driver and the instrument OnStar Console

The Driver and OnStar System linked to Call Making are the preconditions set for Call

Making to occur. To define the postcondition set for Call Making, we ask ourselves what is

the result or effect of Call Making. The result of Call Making is a Call, so we add it in

Figure 27.

Once Call is created by Call Making, it needs to be transmitted, so the next process is Call

Transmitting.

Important: Processes in OPCAT within an in-zoomed process happen top down—the time line

is vertical starting from the top of the in-zoomed process ellipse and ending at the bottom of

the ellipse.

Since Call Transmitting occurs after Call Making, in Figure 28 we place the latter before

the former.

If processes happen in parallel, they are positioned such that their corresponding ellipse tops

are at the same height. To design asynchronous processes that are triggered without a

1. Select the instrument link

2. Drag it from Driver to Call
Making

 30

predetermined time order, we use whole-part relation between processes. For more details,

please refer to the Advanced Course Package.

Figure 27. Call is generated as a result of Call Making.

1. Insert the new object Call
2. all

2. Select the result link

3. Drag it from Call Making

to Call

 31

Figure 28. Call Transmitting preconditions

Call Transmitting requires the Cellular Network and affects the Call. We add Cellular

Network to SD1 using the Insert Property feature. Alternatively we could copy Cellular

Network from SD and paste it to SD1.

Vehicle Location Calculating is a process that is done in parallel to Call Transmitting

using the GPS to produce the Vehicle Location. These new objects and processes and the

links between them are shown in Figure 29.

1. Add Cellular Network as
part of OnStar System using
Insert Property

2. Link with instrument link

to Call Transmitting

3. Link Call to Call
Transmitting with
effect link

 32

Figure 29. Adding Vehicle Location Calculating

Quick Summary

 We zoom into the main process and then describe the different subprocesses

within it.

 The process activation order is from the top of the in-zoomed process ellipse

to its bottom. Parallel subprocesses are positioned at the same height.

 Processes that are asynchronous (i.e., without a predetermined time line) are

positioned outside the super-process and are linked to it with aggregation

relation. For more information about this please refer to the OPCAT Advanced

Course lessons.

 In parallel to specifying the subprocesses we describe the details (parts) of the

surrounding objects.

 Each process will be connected to the relevant object with the appropriate

procedural link.

 An object that is linked to all the subprocesses with the same link type (for

example, an object is an instrument to all the subprocesses) can and should

be connected with just one link to the in-zoomed process, which acts as

―parenthesis‖, similar to parenthesis in an algebraic expression.

4. Add GPS as part of
OnStar System using
Insert Property

3. Link with instrument link to
Vehicle Location Calculating

2. Insert Vehicle Location and
link it with result link to Vehicle
Location Calculating

1. Insert Vehicle Location
Calculating in parallel with Call
Transmitting

 33

7. States and Basic Control Flow

As noted, the effect link between Call Transmitting and Call, shown in Figure 29, can be

replaced in a lower level OPD by a set of more detailed links showing the actual change of

states of Call. In Figure 30 we add to Call the two states requested and online.

Once these two states are established, we replace the effect link between Call and Call

Transmitting with a pair of links called input-output links pair. This pair consists of an

input link—from the state requested to Call Transmitting and an output link—from Call

Transmitting to the state online. This fact is also represented by the OPL sentence:

Call Transmitting changes Call from requested to online.

Figure 30. States added to Call Conditional flow

Additional information about conditional flow can be found in the Advance Course Package.

 34

8. Consistency

We now add the final subprocess of Driver Rescuing, which is Call Handling. According to

the OnStar System description, the OnStar advisor handles the received call. In Figure 31

we therefore add OnStar Advisor to the OPM model.

Figure 31. Adding the OnStar Advisor

OnStar Advisor is added outside the process, while Call was previously added inside the

processes. Why is that so? The answer is that Call is an object which ―lives‖ only as long as

Driver Rescuing is active. In general, an object that is required only by one or more

subprocesses and does not exist when the process is not active will be positioned inside the

process. Otherwise the object must be positioned outside the process.

However, as noted, adding a thing at a lower OPD mandates that it or its ancestor already

exists in at least one OPD at an upper level. In our case, is the OnStar Advisor part of the

OnStar System or is it a stand-alone object at the upper, SD level? In any case, OPCAT

draws our attention to the need for consistency by asking the question shown in Figure 32.

 35

Figure 32. Application of OPCAT’s consistency checker

Selecting OK will add OnStar Advisor as an object to the top-level OPD. Another question is

whether the OnStar Advisor is part of the system. If not, we will mark the OnStar Advisor

as Environmental. This is done in Figure 33.

Figure 33. OnStar Advisor is marked as Environmental

We will now connect the OnStar Advisor with an agent link. At SD, the OnStar Advisor

will be connected with an agent link to the Driver Rescuing Process. At SD1 we can and

should be more specific and link the OnStar Advisor to the subprocess for which OnStar

Advisor is required. We therefore connect the agent link to the Call Handling process.

In order for Call Handling to happen we need also the Driver and the Vehicle Location.

 36

Figure 34. Call Handling Preconditions

Eventually, the Call Handling process changes the Driver’s Danger Status, an attribute of

Driver, from endangered to safe.

 37

Figure 35. Call Handling results

 38

Marking Initial States

At this stage we may want to emphasize the fact that when the system starts to operate, the

Danger Status of Driver is in the endangered state. We may also want to say that the

object Call is created by the process Call Making in the requested state. We can do this

by marking those states as ―initial‖. This is shown in Figure 36. In a similar manner we can

mark another state of an object as final.

Figure 36. Marking initial states

Right click on
the state and
mark as initial

 39

9. In-zooming into the next level

At this stage when our Driver is finally safe we can continue and go into the details of each

of the sub-processes.

Figure 37. returning to top level OPD

While in-zooming to create a more detailed OPD we should bear in mind that the parent OPD

defines the borders for its lower-level OPDs. For instance, Call Making uses OnStar

Console and the Driver, and it yields Call. At the next level, we might describe the

different parts of the OnStar Console, user interface, authentication processes and so on.

Nevertheless, it will all be details of the Driver, Call Making or OnStar Console. If, while

modeling in an OPD at a low level we find that something is missing, then it should be added

to the upper-level OPDs as well all the way to SD, as demonstrated above with regard to

the OnStar Advisor. The consistency checker of OPCAT helps you do this properly.

 40

The requirements of the OnStar System, described in Appendix 1, specify a possibility of

automatic Call Making by using a ―small panel located in the rearview mirror‖. This Panel is

instrument to Call Making. If this Panel is part of the OnStar Console, it will be described

as such in SD1. If not, it needs to be added in SD as a direct part of OnStar System.

It may be also a good time to revisit SD and decide whether we need this level of details at

the top level. We may decide that the parts of the OnStar System will be described only at

the lower levels to avoid clutter of SD and leave it simple and clear.

10. Summary

This guide provides basic concepts of OPM-based design with OPCAT. To gain more

experience, you are encouraged to complete the design of the OnStar System according to

the requirements in Appendix A.

In order to learn how to use the simulation, tagging, views creation, model repository and

additional advanced topics you are invited to obtain the OPCAT Advanced Course Package by

contacting us at consulting@opcat.com.

mailto:consulting@opcat.com

 41

List of Diagrams

Figure 1: An Object-Process Diagram (OPD) showing the three OPM entities: Object, Process, and

State, and the input/output procedural link pair, which expresses that Processing changes Object
from State 1 to State 2. ... 3
Figure 2. A blank OPCAT opening screen .. 7
Figure 3. The New System Properties dialog box ... 7
Figure 4. OPCAT Screen after opening the new OnStar System model .. 9
Figure 5. The Process Properties dialog box .. 9
Figure 6. Driver Rescuing, the main function of the system, has been inserted as a physical process.
First OPL sentence shows up. .. 10
Figure 7. SD after adding the two objects ... 11
Figure 8. SD after linking Driver and Driver Rescuing with an effect link 12
Figure 9. Adding the four parts of OnStar System .. 13
Figure 10. Marking the four parts of OnStar System for horizontal alignment 13
Figure 11. Top alignment of the four parts of OnStar System .. 14
Figure 12. The four parts of OnStar System after top alignment .. 15
Figure 13. The OPM entities .. 17
Figure 14. The structural links ... 18
Figure 15. The procedural links ... 20
Figure 16. Linking the Cellular Network part of OnStar System to the whole OnStar System 21
Figure 17. The question asked after linking Cellular Network to the whole OnStar System 22
Figure 18. The four parts of Cellular Network are now linked to the whole OnStar System 23
Figure 19. Specifying that Driver communicates via OnStar Console .. 23
Figure 20. Inserting the tag "communicates via" in the unidirectional general structural relation ... 24
Figure 21. Zooming into the Driver Rescuing process ... 25
Figure 22. Zooming into the Driver Rescuing process ... 25
Figure 23. The new OPD titled SD1 – Driver Rescuing in-zoomed, created after zooming into the
Driver Rescuing process ... 26
Figure 24. Call Making is inserted as the first subprocess within the in-zoomed Driver Rescuing
process. ... 27
Figure 25. Adding OnStar Console by using the Insert Property feature 28
Figure 26. Connecting Call Making ... 29
Figure 27. Call is generated as a result of Call Making. ... 30
Figure 28. Call Transmitting preconditions .. 31
Figure 29. Adding Vehicle Location Calculating .. 32
Figure 30. Detailing Call states .. Error! Bookmark not defined.
Figure 31. Conditional flow ... 33
Figure 322. Conditional flow.. Error! Bookmark not defined.
Figure 333. Adding the OnStar Advisor ... 34
Figure 344. Consistency Rules ... 35
Figure 355. OnStar Advisor Properties .. 35
Figure 36. Call Handling Preconditions .. 36
Figure 37. Call Handling results ... 37
Figure 38. Marking initial states .. 38
Figure 398. returning to top level OPD ... 39

file:///C:/Dubi%20Dec%2014%202008/OPCAT%20Sytems%20LTD/OPCAT%20Inc/OPCAT%20Manual/OPCAT%20Manual%20Feb%2012%202009.doc%23_Toc222397973
file:///C:/Dubi%20Dec%2014%202008/OPCAT%20Sytems%20LTD/OPCAT%20Inc/OPCAT%20Manual/OPCAT%20Manual%20Feb%2012%202009.doc%23_Toc222397973
file:///C:/Dubi%20Dec%2014%202008/OPCAT%20Sytems%20LTD/OPCAT%20Inc/OPCAT%20Manual/OPCAT%20Manual%20Feb%2012%202009.doc%23_Toc222397973

 42

Appendix A
OnStar System Specification

Being in a car accident, you push a button on a console and are instantly connected with

an OnStar advisor. The advisor can pinpoint your exact location and relay your problem to

emergency services. If you're in an accident, your car can "tell" OnStar without you

having to do a thing.

Source: http://auto.howstuffworks.com/onstar.htm/printable

Cars equipped with OnStar have a small panel located in the rearview mirror, the

dashboard or an overhead console, depending on the model. The blue OnStar button

allows you to contact a live or virtual advisor. The red button with the cross on it is for

emergencies, and the phone or "white dot"

button allows you to make phone calls just as if

you were using a cell phone.

At its most basic, OnStar consists of four

different systems: cellular phone, voice

recognition, GPS and vehicle telemetry. All of

the services that OnStar provides are a result

of one or more of these systems working

together, making it a ""System of Systems".

OnStar's cellular service is voice-activated and

hands-free. The console contains a built-in

microphone and uses the car speakers. To

make a call, you speak a phone number or a

previously stored name associated with a phone number. The console is connected to a

Vehicle Comm and Interface Module (VCIM), which uses a cellular antenna on top of the

car to transmit signals to OnStar's cellular network.

For calls to the advisor, OnStar uses voice recognition software. OnStar can "surf the

Web" using the Virtual Advisor automated system. For this service, OnStar uses text-to-

voice technology called VoiceXML. When you ask for information, such as "weather," the

software translates your request into XML (Extensible Markup Language) and matches it

to settings in your OnStar profile. Then it translates the information into VoiceXML and

reads it to you.

The GPS receiver is called OnCore, and it is part of the VCIM. A GPS receiver in the vehicle

picks up signals form GPS satellites and calculates the location of the vehicle. The OnStar

Call Center uses four different satellites to pinpoint the car's location when either the

driver or the car itself asks to be located. That location is stored in the vehicle's OnStar

hardware. The GPS uses the amount of time that it takes for a radio signal to get from

satellites to a specific location to calculate distance.

When the driver pushes the blue OnStar button or red emergency button or an airbag

deploys, OnStar places an embedded cellular call the OnStar Center with the vehicle

location data. An OnStar advisor handles the call.

http://auto.howstuffworks.com/onstar.htm/printable
http://auto.howstuffworks.com/biometrics4.htm
http://auto.howstuffworks.com/biometrics4.htm
http://auto.howstuffworks.com/gps.htm
http://auto.howstuffworks.com/question309.htm
http://auto.howstuffworks.com/speaker.htm
http://auto.howstuffworks.com/satellite.htm
http://auto.howstuffworks.com/radio.htm

 43

To give a vehicle the ability to call when it is in an accident, OnStar uses an event data

recorder (also known as a crash data recorder). GM calls the entire process the Advanced

Automatic Crash Notification System (AACN). The AACN system comprises four

components: sensors, the Sensing Diagnostic Module (which includes the event data

recorder), the VCIM and the cellular antenna. When the car is in a crash, sensors transmit

information to the Sensing Diagnostic Module (SDM). The SDM also includes an

accelerometer, which measures the severity of the crash based on gravitational force. The

SDM sends this information to the VCIM, which uses the cellular antenna to send a

message to the OnStar Call Center. When an advisor receives the call, he uses the GPS to

find the vehicle's location and calls the car to check with the driver. Even if there's not a

measurable impact, the VCIM also sends a message when the air bag goes off, prompting

the advisor to call the car's driver.

http://auto.howstuffworks.com/fpte2.htm
http://auto.howstuffworks.com/airbag.htm

