

A Graph Grammar-Based Formal Validation of an Object-Process

Diagram

Research Thesis

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Information Management Engineering

Arieh Bibliowicz

Submitted to the Senate of

the Technion – Israel Institute of Technology

Av, 5768 Haifa August 2008

The Research Thesis was done under the supervision of Professor Dov Dori in the

faculty of Industrial Engineering, Information Management Area.

Table of Contents

 1. Error! Not a valid result for table. 1

 2. Object-Process Methodology 8

 3. Graph Grammars 16

 4. OPD Graph Grammar 24

 5. OPD Abstraction 32

 6. Coverage 86

 7. From a single OPD to a Complete OPM System Validation 88

 8. Conclusions 93

 9. References 94

Table of Figures

Figure 1. The OPM entities 9

Figure 2. Example of OPM links 10

Figure 3. OPD hierarchy example 14

Figure 4. Basic graph 16

Figure 5. The two productions of Example 1 19

Figure 6. Initial graph of Example 1 20

Figure 7. Example 1 graph after application of Production 1 – Consumption Link

Insertion
21

Figure 8. Example 1 graph after application of Consumption Link Insertion and

Object Aggregation Removal
21

Figure 9. Application Conditions 22

Figure 10. Production 1 with a negative constraint 23

Figure 11. Abstract links 25

Figure 12. Abstract structural and procedural links 25

Figure 13. Thing Creation production 26

Figure 14. Existing Name Thing Creation Production 26

Figure 15. State Creation production 27

Figure 16. State Removal production 27

Figure 17. Thing Removal production 27

Figure 18. Homogeneous structural link creation productions 28

Figure 19. Aggregation loop creation production 29

Figure 20. Generalization and Aggregation link pair creation production 29

Figure 21. Non-homogeneous structural link creation production 29

Figure 22. Object-to-Process link creation productions 30

Figure 23. Process-to-Object link creation production 30

Figure 24. Bidirectional procedural link creation production 31

Figure 25. Invocation link creation production 31

Figure 26. Link removal production 31

Figure 27. Abstraction of a simple OPM link 32

Table of Figures (Cont.)

Figure 28. Abstraction of the link of a part 32

Figure 29. Temporary instrument link (left) and result link (right) 33

Figure 30. Superpositioned temporary and regular links together 34

Figure 31. Calculating the things' height 36

Figure 32. State change abstraction production 37

Figure 33. State-Specified Link Abstraction production 37

Figure 34. Assembly Line OPD before abstraction 38

Figure 35. OPD after abstraction 38

Figure 36. Production 9.2.1 – Promotion of Part Effect to Aggregate Effect 39

Figure 37. Match in Assembly Line OPD for Production 9.2.1 39

Figure 38. Object exhibiting process 67

Figure 39. Example embedding of Parent OR/XOR production in an Object-

Based Procedural Link Abstraction production.
68

Figure 40. Illegal construct example 70

Figure 41. Invalid signature example 77

Figure 42. Valid signature abstraction 78

Figure 43. Example OPD before and after abstraction 78

Figure 44. Abstraction process example execution 79

Figure 45. ABS Braking OPD 81

Figure 46. State change abstraction on Brake Assembly 82

Figure 47. State-Specified Link abstraction on Brake Assembly 82

Figure 48. Example diagram after initial abstraction of Brake Assembly 82

Figure 49. Promotion of Part Instrument to Aggregate Instrument Production 83

Figure 50. Example diagram after Brake Assembly instrument link abstraction 83

Figure 51. Example diagram after all Brake Assembly links abstracted 83

Figure 52. Example diagram after first round of the abstraction algorithm 84

Figure 53. Example diagram before Braking process abstraction 84

Figure 54. Example diagram after procedural abstraction of Braking process 85

Figure 55. Example diagram after abstraction of Braking process 85

Figure 56. Final abstraction of the example diagram 85

Figure 57. In-Zoom Refinement 89

Table of Figures (Cont.)

Figure 58. In-Zoom Refinement Unfolding Transformation 89

Figure 59. The link precedence matrix 90

1

Abstract

Conceptual modeling is the field where humans model natural or artificial systems.

The basic requirements of a model is for it to be both easy to understand and to

describe correctly and unambiguously the system that it is modeling. Although these

goals are trivial, over time most modeling methodologies have been able to satisfy

only one of the requirements fully, regularly the ease to understand, while leaving the

correctness and ambiguousness problems aside. There exist some formal modeling

languages but a full model is fairly complicated to understand in these languages.

OPM is an holistic system modeling methodology that combines all of the aspects of a

system in one model, and at the same time provides mechanisms to manage the

complexity of the model with zooming and folding operations, which divide the

complexity of a large system into many models that are interconnected. Although the

basic syntax and semantics of an OPM system model are already defined, this

definitions is not complete and leaves room for incorrect models and models that can

be interpreted in different ways.

This work advances de formal definition of OPM by providing a graph grammar

which creates OPM diagrams whose syntax is correct when a pair of interconnected

things are taken, but the correctness of the whole diagram is not assured. After that a

diagram is created, a validation methodology must be applied to the diagram to assure

that it is fully semantically and syntactically correct. The validation methodology is

also based on graph grammars.

2

1. Introduction and Background

Conceptual modeling is the field where humans model systems. The various uses of

these models can be divided into two groups: models that describe existing things (for

example the interchange of chemicals in a human cell) and models that describe

human creations (such as machines, software, assembly lines). We want these models

to be simple, abstracting information that is not necessary, and at the same time they

should be able to describe the system in detail and without ambiguity.

There are many ways to conceptually model a system. For small systems, and where a

small number of people is involved in the modeling process, this can be done with in-

house methods. All the people involved get together and agree on a modeling

technique, which can be graphic or textual, computer-based or hand-written.

As systems grow larger and evolve over time, these techniques become hard to

maintain and they cannot describe all the things that needed to be modeled in the

system. Furthermore, these models would only be understood by the people that are

familiar with the ad-hoc modeling technique, adding more problems when changes

are involved or when the model has to be shared with other people.

As the systems become more complex, these problems become ever more acute.

System architects and designers, who create models and use them to communicate

ideas, consequently realized that there is a need to establish methodologies that can

describe their domain of interest, which all designers can use and understand, like an

Esperanto of modeling. Although this task seems simple, time has shown that it is

extremely complicated. An example of this process can be seen in the field of

Software Engineering.

Since the early days of computers, "software researchers and developers have been

creating abstractions that help them program in term of their design intent rather than

the underlying computing environment... and shield them from the complexities of

these environments" [37]. These abstractions began as programming languages used

to abstract the hardware where they ran. The 1970's saw the creation of structured

methods to model the data and functional, behavioral aspects of the systems [5]. One

main drawback of these methods was the lack of consistency between the data and the

behavior parts of the system, as well as between the concepts expressed by the model

and the ones provided by the real world or the implementation. In the 1980s there was

3

an increased focus on Computer Aided Software Engineering (CASE) tools and

methodologies to express software design in graphical representations such as state

charts, data flow diagrams and others [17]. Although this field attracted great attention

from the research community, it was not widely used in the software development

process in industry because it did not scale up to handle complex problems, not did it

support concurrent engineering. CASE tools have thus become usable by software

designers mainly to document their decisions and guide the developers in their work.

With the advance of software languages, the abstraction gap between the programmer

and the machine increased. Modeling methodologies were necessary to abstract the

software under development.

The most common abstraction was the Object-Oriented paradigm, which stipulates

that every entity in the system is an object which owns operations, and the behavior in

the system occurs by message passing between objects in the system. This paradigm

was further supported by third generation languages such as C++ and Java, which

have become the de-facto standard for programming languages. Although this

paradigm was a great leap forward, "the success of object-oriented modeling

approaches was hindered in the beginning of the 1990's by the fact that surely more

than fifty object-oriented modeling approaches claimed to be the right one, the so-

called object-oriented method war. This "method war" came to a (temporary) end by

an industrial initiative, which pushed the development of the meanwhile standardized

object-oriented modeling language UML" [11].

After a decade of UML use, it has not proven to be a panacea. Although UML does

give a guideline for designing systems, as it has many drawbacks and problems. There

are many other system modeling techniques less popular that UML that are also used

to model software systems, such as the Z-notation [42], Petri-nets [1], and plain prose,

but none of them is currently a major winner in the modeling arena. As stated in

[27]"If we built buildings the way we built software, we would be unable to connect

them, change them or even decorate them easily to fit new uses; and worse, they

would constantly be falling down... We have very little excuse to build software

without first doing careful design work".

Although system modeling languages can help create better products, most current

modeling languages are not formal – they lack the mathematical foundation for

checking the syntax of the model created using them. While this may be tolerable in

the initial design of a system, where the architects and designers interact and

4

communicate their models to each other via meetings, reviews, etc., once a system has

lived for some time, its model drifts away from reflecting the system and tends to

become incorrect, because of lack of updates, or erroneous updates due to lack of a

formal definition of the modeling language. The formality provides the model users

with an exact definition of their model.

The formality requirement is far from being trivial. A model should not just be correct

and complete; one of its most important characteristics is that it be comprehensible.

Most of the models are incomplete because we want to remove clutter from them.

Many modeling languages have therefore opted for user-friendliness as their main

goal and did not care for the formality requirement. An ideal modeling language

needs to be both comprehensible and formal. These two requirements are potentially

in odds with each other, so the challenge is to design the language so that it caters to

both these objectives.

1.1 Current Software Modeling and Specification Languages

In this section we briefly describe main approaches and languages for modeling and

specification of systems in general and software systems in particular.

1.1.1 Free Prose

Using the free prose approach, the system or software engineer writes a document,

often based on a predefined template, that defines the system, using his/her own

language and possibly a predefined terminology that the organization uses. The

system engineer can also add diagrams that graphically expand the textual definition.

Because of the complexity of the systems, there is usually more than one document

that defines it, and the system engineers use references between documents to link

their relations and interactions. Although this approach is prone to incompleteness,

ambiguities, and inconsistencies, it is widely used.

1.1.2 Visual Languages

A large amount of research has been done on how to model complex systems (and

specifically software systems) using many kinds of visual languages, e.g., [21], [17],

[18], [38]. While most of these methods are used purely for academic purposes, they

have provided many ideas that are later implemented in languages and methodologies

like UML and OPM.

5

1.1.3 UML and SysML

Created by the Object Management Group and accepted as an industry standard since

1997, "the Unified Modeling Language (UML) is a visual language for specifying,

constructing and documenting the artifacts of systems. It is a general-purpose

modeling language that can be used with all major object and component methods,

and that can be applied to all application domains and implementation platforms."

[31]. UML provides a collection of 13 different diagram types [32]to define the

structure and behavior of the system. Although it is probably the most widely used

modeling language, UML has been found to have many drawbacks, mainly its

complexity (the UML Infrastructure document is 220 pages long, the

Superstructure—732 pages long), imprecise semantics and a problematic learning

curve. A few citations illustrate this state of affairs:

"The numerous modeling concepts, poorly defined semantics, and lightweight

extension mechanisms that UML provides make learning and applying it in an model-

driven development environment difficult" [13].

"UML 2.0 lacks both a reference implementation and a human-readable semantic

account to provide an operational semantics" [45].

"The infrastructure of UML is gratuitously complex and difficult to maintain" [22].

"The lack of precise semantics for OO notations can result in situations where a

reader's interpretation is not the same (or is not consistent) with the model creator's

interpretation" [12].

Efforts to provide UML or a subset of UML with formal semantics include attempts

that use graph grammars [24], [25], [15], [49], [14], [23], a mathematical notation [2],

Abstract State Machines [20], Petri Nets [43], Z-notation [3], [29], B language [39]

and UML itself [44]. A survey of the work done on this field is provided in [28].

A descendant of UML, defined as an extension of a UML subset, is the Systems

Modeling Language (SysML) [30]also provided by the Object Management Group.

SysML is an initiative originating in the International Council for System Engineers

(INCOSE) to customize UML for system engineering, using a subset of the existing

diagrams (seven in all) and adding two more diagrams (requirements and parametric).

Although this is a big improvement on the side of simplicity, SysML still "does not

solve the question of lack of semantics in UML" [46]

6

1.1.4 Object Process Methodology

Object Process Methodology [7]is a holistic modeling approach that "maintains the

balance between system structure and behavior" [6] by treating objects and processes

as primary entities in the model, unlike the Object Oriented (OO) approach, where a

process cannot exist detached from an object. To model the behavior of the system,

OPM uses links that connect objects and processes. Together, the objects, processes

and links coexist in a single model that integrates both the structural and procedural

aspects of the system, a trait which "reinforces the user's ability to construct, grasp,

and comprehend the system as a whole and at any level of detail" [35].

Because of its intrinsic integration of structure and behavior, OPM provides a solid

basis for modeling complex systems, and has been extended to model real-time

systems [34], [33], ERP [39]and web applications [36]. OPM is described in detail in

section 2.

1.1.5 Formal Modeling Languages

There are several formal languages for system modeling and design, some for general

systems and others for specific types of systems. Two prominent formal ones are

described briefly below.

1) Petri Nets [1]: A formal graphical mathematical representation of distributed

systems, which serves to demonstrate many properties of the model, like the

ordering of events in a network, concurrency and conflicts.

2) The Z-notation [42]: A mathematical notations to describe the data types that exist

in a system and predicate logic to describe the operations that can occur and how

they affect the data in the system.

The basic problem with these formalities is that they are constrained to specific fields

(e.g., Petri nets is suited for distributed computing) or their notation is complex (as in

the Z-notation), and are not sufficiently abstract to define any kind of system at its

different levels. Moreover, these languages are also fairly complicated, making it hard

to "see the forest".

1.2 Research Goal

In a language, the syntax defines how the language is constructed, what combinations

of elements are legal. The semantics of the language give the language its meaning.

7

For example, the English sentence "Cows eat grass." is both syntactically and

semantically correct, the sentence "Cows eat airplanes." is correct syntactically, but

not semantically, specifically because cows do not eat airplanes. The sentence "The

eats cow grass." is neither semantically nor syntactically correct.

The syntax of OPM carries some of its semantics, because unlike written languages

where the symbols by themselves have no meaning, in OPM the symbols carry

semantics.

The goal of this research is to devise a formal methodology for defining the syntax of

an Object-Process Diagram (OPD) and the semantics associated with this syntax.

Although the OPM modeling language is thoroughly defined in [7]and [35], the

definitions are not complete and leave some room for the designer to make mistakes

that render the model inconsistent. This work complements the previous works by

adding a layer of formality that makes a contribution towards converting OPM from a

semi-formal to a formal modeling language.

8

2. Object-Process Methodology

Object-Process Methodology (OPM) is a holistic modeling approach that combines

the structure and behavior of the system in the same model, providing full integration

of the important system aspects. OPM has been found [41] to be an ontologically

complete modeling language according to the Bunge-Wand-Weber framework [47], a

theoretical framework for understanding the modeling of information systems, since it

is able to model all things in the real world that are of interest to users of information

systems.

OPM is defined by its reflective metamodel [35]. A metamodel is a model of a

methodology, which provides further understanding of the modeling language and

provides a robust basis for code generation, model transformation and analysis.

2.1 Concepts

The primary elements of OPM are entities and links. Entities are the generalization of

things and states, and things are a generalization of object and process – the two

primary building blocks in an OPM model. At any time, a stateful object (object with

states) is at a specific state, and the state of the object is changed through a process.

Likewise, links are a generalization of structural and procedural links. Structural links

represent the static relation between pairs of things in the system while procedural

links express the dynamics of the system.

To manage complexity, OPM provides three ways to refine/abstract the system

model: in-zooming/out-zooming allows the abstraction of complex entities by hiding

its components at high abstraction modeling levels and showing them when their

details are required; unfolding/folding provides a means to model any thing in the

system as showing or hiding the hierarchy beneath a root thing; and state

expressing/suppressing gives freedom to show or hide the states of an object as

desired. These mechanisms enable OPM to specify and refine the system indefinitely

to any desired level of detail without losing legibility and maintaining simplicity at

every detail level.

OPM models a system in two parallel representations, or modalities – one graphic and

one textual, which jointly and individually express the same OPM model. A set of

Object-Process Diagrams (OPDs) provide a graphical representation of OPM. Each

9

OPM element in an OPD is denoted by a specific symbol, and in the diagrams the

entities are interconnected by entity links following the rules described in the OPM

metamodel. The Object-Process Language (OPL) is the textual counterpart of the

OPD graphical representation, which describes the model in a subset of English.

According to Mayer's cognitive theory [26], the combination of graphical and textual

representation increase the processing capabilities of humans and therefore their

understanding of the modeled system.

2.2 Entities – the OPM Building Blocks

As stated, OPM consists of two types of elements: entities and links. Entities are

specialized into things and states, and things can be objects or processes, which are

the basic building blocks of OPM. A state is not a stand-alone entity, as it reflects the

situation of an object and it is "owned" by it. The status of an object (its state) can be

affected only by a process. Objects are represented in OPM as rectangles, and

processes as ellipses. A state is represented as a "roundtangle" (rounded edge

rectangle) within the rectangle of its owning object, as shown in Figure 1.

Object

State

Object Process State

Figure 1. The OPM entities

In OPM, an object is a thing that exists. A process is a thing that transforms at least

one object. Transformation is object generation or consumption or change in the state

of the object.

A link is an element that connects two entities and represents a semantic relation

between them. Links can be of two kinds: structural and procedural. A structural link

represents a static structural relation between two entities, such as aggregation or

generalization. A procedural link connects an entity with a process to denote a

dynamic behavioral flow of information, material, or others. A further specification of

a procedural link is an event link, which indicates a specific event that happens at a

particular moment or when specific preconditions are met. Each link is drawn as a line

with a special symbol attached to one end or in the middle of the line depending on

the link type. Some links types are drawn in Figure 2.

10

Aggregation-Participation Link Generalization-Specialization Link

Consumption Link Instrument Link

Figure 2. Example of OPM links

OPM elements have many other attributes, for example essence, which can be either

physical – the modeled element is a physical object in the real world, or informatical –

something that is not tangible but can be defined and used as a modeling element.

Examples of physical elements are machine, raw material and product; Examples of

informatical elements are computing, account and transaction.

The common constructs of OPM are shown in the following tables.

Entities

Name Symbol OPL Definition

T
h

in
g

s

Object

Process

B is physical.

(shaded rectangle)

C is physical and

environmental.

(shaded dashed

rectangle)

E is physical.

(shaded ellipse)

F is physical and

environmental.

(shaded dashed

ellipse)

An object is a thing that exists.

A process is a thing that

transforms at least one object.

Transformation is object

generation or consumption, or

effect—a change in the state of

an object.

11

State

A is s1.

B can be s1 or s2.

C can be s1, s2,

or s3.

s1 is initial.

s3 is final.

A state is situation an object can

be at or a value it can assume.

States are always within an

object.

States can be initial or final.

STRUCTURAL LINKS & COMPLEXITY MANAGEMENT

Name Symbol OPL Semantics

A consists of B

and C.

Aggregation-

Participation

A consists of B

and C.

A is the whole, B

and C are parts.

A exhibits B,

as well as C.

Exhibition-

Characterization

A exhibits B,

as well as C.

Object B is an

attribute of A and

process C is its

operation

(method).

A can be an object

or a process.

B is an A.

C is an A.

F
u

n
d

am
en

tal S
tru

ctu
ral R

elatio
n

s

Generalization-

Specialization

B is A.

C is A.

A specializes into

B and C.

A, B, and C can be

either all objects or

all processes.

12

Classification-

Instantiation

B is an

instance of A.

C is an

instance of A.

Object A is the

class, for which B

and C are

instances.

Applicable to

processes too.

Unidirectional &

bidirectional tagged

structural links

A relates to B.

(for

unidirectional)

A and C are

related.

(for

bidirectional)

A user-defined

textual tag

describes any

structural relation

between two

objects or between

two processes.

A exhibits C.

A consists of

B.

A zooms into

B, as well as C.

Zooming into

process A, B is its

part and C is its

attribute.

In-zooming

A exhibits C.

A consists of

B.

A zooms into

B, as well as C.

Zooming into

object A, B is its

part and C is its

operation.

ENABLING AND TRANSFORMING PROCEDURAL LINKS

Name Symbol OPL Semantics

Agent Link

A handles B.
Denotes that the object is a

human operator.

Instrument Link

B requires A.

"Wait until" semantics:

Process B cannot happen if

object A does not exist.

E
n

ab
lin

g
 L

in
k

s

State-Specified

B requires s1

A.

"Wait until" semantics:

Process B cannot happen if

object A is not at state s1.

Consumption

Link

B consumes

A.

Process B consumes object A.

State-Specified

Consumption

Link

B consumes

s1 A.

Process B consumes object A

when it is at state s1.

Result Link

B yields A.
Process B creates object A.

T
ran

sfo
rm

in
g

 lin
k

s

State-Specified

Result Link

B yields s1

A.

Process B creates object A at

state s1.

13

Input-Output

Link Pair

B changes A

from s1 to

s2.

Process B changes the state of

object A from state s1 to state

s2.

Effect Link

B affects A.

Process B changes the state of

object A; the details of the

effect may be added at a

lower level.

EVENT, CONDITION, AND INVOCATION PROCEDURAL LINKS

Name Symbol OPL Semantics

Instrument Event

Link

A triggers B.

B triggers A.

Existence or generation of object A

will attempt to trigger process B

once. Execution will proceed if the

triggering failed.

State-Specified

Instrument Event

Link

A triggers B.

when it

enters s1.

B requires

s1 A.

Entering state s1 will attempt to

trigger the process once. Execution

will proceed if the triggering failed.

Consumption

Event Link

A triggers B.

B consumes

A.

Existence or generation of object A

will attempt to trigger process B

once. If B is triggered, it will

consume A. Execution will proceed if

the triggering failed.

State-Specified

Consumption

Event Link

A triggers B

when it

enters s1.

B consumes

s1 A.

Entering state s1 will attempt to

trigger the process once. If B is

triggered, it will consume A.

Execution will proceed if the

triggering failed.

Condition Link

B occurs if A

exists.

Existence of object A is a condition

to the execution of B.

If object A does not exist, then

process B is skipped and regular

system flow continues.

State-Specified

Condition Link

B occurs if A

is s2.

Existence of object A at state s2 is a

condition to the execution of B.

If object A does not exist, then

process B is skipped and regular

system flow continues.

Invocation Link

B invokes C. Execution will proceed if the

triggering failed (due to failure to

fulfill one or more of the conditions

in the precondition set).

14

2.3 Object Process Diagram

A System Model is an OPM model that defines a system. A system model consists of

a set of Object Process Diagrams (OPDs) arranged in a tree structure. The OPDs in a

system model are interconnected by the in-zooming or unfolding relation. At any

stage in the modeling process, the modeler can decide to increase the details for a

specific thing in a model, and this is done using the in-zooming and unfolding

operations.

When a thing is in-zoomed a new OPD is created, in which the in-zoomed thing is

enlarged and centered in the diagram. When a thing is unfolded, the operation creates

a new OPD where the unfolded thing is located at the top of the diagram.

The in-zooming and unfolding operations create an OPD hierarchy. The OPD

hierarchy starts with the topmost level system diagram, called SD. Each diagram that

is spawned from this diagram using the in-zooming operation is named SD1, SD2...

sequentially. Furthermore, the modeler can also in-zoom a thing that exists in one of

these SDs (for example SD2), creating a new system model which is called SD2.1.

Additional models that are spawned from this model using the in-zooming operations

will be named SD2.2, SD2.3 and so on. Generally, the level of an SD is the number of

numbers separated by dots that it has in its name (SD has no numbers therefore its

level is 0). When an in-zooming operation creates a new SD, this SD is named by

adding a dot to the name of the SD from which this one is created and adding the

lowest sequence number that is not yet used in the system model.

The unfolding operation also spawns new SDs, but unlike in-zooming, these SDs

occur below the topmost level diagram (SD) and are named UD1, UD2... sequentially.

An example of an OPD Hierarchy is shown in Figure 3.

Figure 3. OPD hierarchy example

15

From the hierarchy shown above the following things can be observed:

1) The ATM System Model consists of 7 system diagrams.

2) The topmost level diagram SD contains one in-zoomed thing: Transaction

Executing.

3) SD1 contains two things that are in-zoomed: Transaction Processing and Account

Checking.

4) SD1.1 contains one in-zoomed thing: Cash Withdrawing.

5) SD1.2 contains two in-zoomed things: Password Checking and Cash Card

Validating.

6) UD1 is the unfolded diagram of thing Customer

16

3. Graph Grammars

Graph Grammars (or Graph Transformations) is a field of Graph Theory that

formalizes the creation or transformation of graphs using predefined transformation

rules. Following are definitions of basic Graph and Graph Grammar concepts. Unless

otherwise stated, all definitions are taken from [4] and [10].

3.1 Graphs

Definition 1 Labeled Graph

• Given two fixed alphabets VΩ and EΩ for node and edge labels respectively, a

labeled graph is a tuple , , , , ,G G G G

V EG G G s t lv le= where

• VG is a set of vertices (or nodes)

• EG is a set of edges (or arcs)

• , :G G

E Vs t G G→ are the source and target functions, and

• :G

V Vlv G →Ω and :G

E Ele G →Ω are the node and the edge labeling

functions respectively.

The most common way to picture a graph is by drawing a circle for each vertex and

joining these circles by a line for every edge that connects between the nodes, as

shown in Figure 4.

Figure 4. Basic graph

The graph in Figure 4 has 3 nodes and 4 edges. The names given to the nodes and

edges in the graph here are taken from their labels. Mathematically the graph consists

of a set of nodes 1 2 3{ , , }VG v v v= and a set of edges 1 2 3 4{ , , , }EG e e e e= (the name of

the nodes and edges was chosen arbitrarily. They will be later mapped to their label

by the labeling functions), functions 1 3 2 1 3 2 4 2{(,), (,), (,), (,)}Gs e g e g e g e g= and

1 1 2 3 3 1 4 2{(,), (,), (,), (,)}Ts e g e g e g e g= for source and target node matching, and

17

functions 1 2 3{(,), (,), (,)}Glv g A g B g C= and 1 2 3 4{(,1), (, 2), (,3), (, 4)}Gle e e e e= for

edge and node labeling, over the alphabets { , , }V A B CΩ = and {1, 2,3, 4}EΩ = .

An Object-Process Diagram (OPD) can be considered a Directed Typed Graph as

follows:

• OPM

VΩ = {Object, Process, State} – the node alphabet.

• OPM

EΩ = {Object-State, Tagged, Aggregation-Participation, Exhibition-

Characterization, Generalization-Specialization, Classification-Instantiation,

Agent, Instrument, Consumption, Result, Effect, Input-Output pair, Invocation,

Event, Consumption Event, Condition, Exception} – the edge alphabet.

Although this is the formal notation for the OPM graph, its graphical OPD

representation is easier to understand and more straightforward, so this is the notation

used throughout this work. Furthermore, OPM states are not stand-alone entities and

are drawn inside the object that owns them. The object ownership relation is

abstracted by adding a new type of link, Object-State, which denotes that it belongs to

the object. Since the notation in OPM is more expressive and is part of the OPD

syntax, we use it, bearing in mind that it can be changed to the formal node-link-node

representation by detaching the state from the owning object, moving it out of the

object and adding a link between the object and the detached state.

An OPM model is a graph of graphs – a tree of OPDs, where each node in the tree is

an OPD, and the links in the tree are defined by the refinement/abstraction (in-

zooming/out-zooming or unfolding/folding) relations between the OPDs.

To be able to use graph grammars we define additional properties of graphs and

operations on them.

Definition 2 Graph Morphism

• Let , , , , ,G G G G

V EG G G s t lv le= and ' ' ' '' ' , ' , , , ,G G G G

V EG G G s t lv le= be two

graphs over the same label alphabets VΩ and EΩ . A Graph Morphism

: 'f G G→ is the pair of functions : ' , : 'v V V e E Ef f G G f G G= → → that

preserve sources, targets and labels, such that:

• Ee G∀ ∈ , '(()) (())G G

v ef s e s f e= (source node preservation)

• Ee G∀ ∈ , '(()) (())G G

v ef t e t f e= (target node preservation)

• Vv G∀ ∈ , '() (())G G

vlv v lv f v= (node label preservation)

18

• Ee G∀ ∈ , '() (())G G

ele e le f e= (edge label preservation)

Definition 3 Subgraph

• Suppose V, E and E' are sets, 'E E⊆ and s is a mapping :s E V→ . The operator

' | 's s E= defines a new mapping s' for every element in E', where

(') '(')s e E s e E∈ = ∈ . The value of '(\ ')s e E E∈ is not defined in this mapping.

• Let G be a labeled graph as defined in Definition 1.

• A subgraph , , , , ,S S S S

V ES S S s t lv le= of G , written as S G⊆ , is a graph

having V VS G⊆ , E ES G⊆ ,
E

S G

Ss s= ,
E

S G

St t= ,
V

S G

Slv lv= and
E

S G

Sle lv= .

Definition 4 Partial Graph Morphism

• A partial graph morphism : 'm G G→ is a graph morphism of a subgraph of G to

a subgraph of 'G .

3.2 Basic Graph Grammar Concepts

Based on the above definitions, we now formally define a Graph Transformation

Rule. There are two common ways to define transformation rules: the double pushout

approach (DPO) and the single pushout approach (SPO). The double pushout

approach has stronger properties than the single pushout approach but it is more

complex. Since the single pushout approach satisfies all our requirements, we use it

for simplicity.

Definition 5 SPO Production Rule

• A production : rp L R→ consists of a production name p and an injective

partial graph morphism r called the production morphism. L and R are graphs

called the left-hand graph and the right-hand graph, respectively.

Informally, the left-hand graph describes the context needed for the rule to be applied

– nodes and edges alike. The right-hand graph shows how the original part of the

graph will look like after the application of the production rule. The morphism

specifies which element (node or edge) in the left-hand graph is matched with which

element in the right-hand graph. Each element missing from the right-hand graph is

deleted from the graph in which the production is applied, and if this deletion causes

dangling edges, i.e., edges that have no source or destination, they are deleted as well.

Elements missing from the left-hand graph that exist in the right-hand graph are added

19

to the graph where the production is applied. This operation is called a Derivation, as

defined below.

Definition 6 Production, Derivation

• A match for : rp L R→ in some graph G is a graph morphism :m L G→ .

Given a production p and a match m for p in graph G, the direct derivation from

G with p at m, written
,p m

G H⇒ , is done as follows:

• Using morphism m, delete vertices and edges of G that occur in L and do not

occur in R.

• Add to G all vertices and edges that occur in R but do not occur in L.

• Delete all dangling edges from G.

Intuitively, the application of a graph production : rp L R→ to a graph G works as

follows: Replace the occurrence (match) of L in G by R. Delete edges whose source or

target nodes are deleted. If a node or an edge is supposed to be deleted as well as

preserved, solve this conflict by deletion too.

Example 1

The following example demonstrates the basic graph grammar concepts on a small

OPM model. Throughout this work, each OPD (such as the left-hand and right-hand

graphs) is surrounded by a rectangular frame. The grammar's set of production rules is

given in Figure 5.

Production 1:

Consumption Link Insertion

→

Production 2:

Object Aggregation Removal

→

Figure 5. The two productions of Example 1

The initial graph for our example is 1G shown in Figure 6.

20

1G =

Object1

Object2

Object3

Process1

Process2

Figure 6. Initial graph of Example 1

Formally, 1G = , , , , ,G G G G

V EG G s t lv le over OPM

VΩ and OPM

EΩ .

• VG = {Object1, Object2, Object3, Process1, Process2}

• EG = {Ag1, Ex1, Gen1, Cons1}

• Gs = {(Ag1, Object1), (Ex1, Object2), (Gen1, Process1), (Cons1, Object3)}

• Gt = {(Ag1, Object2), (Ex1, Object3), (Gen1, Process2), (Cons1, Process2)}

• Glv = {(Object1, Object), (Object2, Object), (Object3, Object), (Process1,

Process), (Process2, Process)}

• Gle = {(Ag1, Aggregation-Participation), (Ex1, Exhibition-Characterization),

(Gen1, Generalization-Specialization), (Cons1, Consumption)}

Let us apply the two productions on 1G , starting with Production 1 – Consumption

Link Insertion. The first step is to find a subgraph of the graph 1G that matches the

left-hand side of Production 1.

There are six possible matches: {Object1, Process1}, {Object1, Process2}, {Object2,

Process1}, {Object2, Process2}, {Object3, Process1} and {Object3, Process2}. The

last option exists since we did not yet add negative constraints to prevent redundant

links. We choose to apply the rule on {Object1, Process1}, resulting in graph 2G ,

shown in Figure 7.

21

2G =

Object1

Object2

Object3

Process1

Process2

Figure 7. Example 1 graph after application of Production 1 – Consumption Link

Insertion

Next, we apply Production 2 – Object Aggregation Removal on the resulting graph

2G . The only available match for the left-hand graph is {Object1, Object2}. Applying

this rule, the edge in the left-hand graph is removed so it is missing in the right-hand

graph. Therefore we remove, obtaining the graph 3G , shown in Figure 8.

3G =

Object1

Object2

Object3

Process1

Process2

Figure 8. Example 1 graph after application of Consumption Link Insertion and

Object Aggregation Removal

3.3 Application Conditions

Using derivations, we can describe how graphs are legally transformed into other

graphs. However, specifying when these transformations can be applied is limited to

the positive application condition, namely, that the graph to be transformed contains a

subgraph that matches the left-hand side graph. This positive application condition

can be extended with application conditions which specify contexts, where the

transformation can be applied. Application conditions can be positive (contexts that

exist in the graph) or negative (contexts that must not exist in the graph).

22

To specify application conditions, we specify not just one left-hand side graph L, but a

set of graph morphisms { ˆlL L→ } called constraints [19], [9], [16]. Each constraint

represents a structure on the left-hand graph that must exist for positive constraints

and must not exist for negative constraints. To produce a match that satisfies the

constraints, we must first check that all the constraints hold in the source graph, and if

so, find a subgraph that matches L, as defined formally below.

Definition 7 Application Conditions

• An application condition over a graph L is a finite set A={ ˆlL L→ } of graph

morphisms of the form ˆlL L→ called constraints.

• Let : rp L R→ be a production, : la L Q→ a positive constraint, and

:m L G→ a match for L in graph G. We say that m satisfies a, denoted by |m a=

if there exists a graph morphism n such that n l m=� , where � is the

mathematical function composition operator, which means that we apply

morphism l to L and then we apply morphism n to the result.

• A negative constraint is defined as a regular constraint for which morphism n must

not exist.

• A match m satisfies an application condition A over L, denoted by |m A= if it

satisfies all the constraints a A∈ .

The concepts in this definition are shown graphically in Figure 9. The match m for L

is shown as an arrow from L to G. On the left-hand of Figure 9 a positive constraint,

given by morphism l, transforms graph L to Q. The positive constraint requires the

existence of morphism n (not specified), which matches Q to G. The right-hand side

of Figure 9 shows the same constellation, except here n must not exist.

positive constraint negative constraint

Figure 9. Application Conditions

Usually the specified constraints are negative, since the positive constraints can be

modeled in the left-hand side graph of the production.

23

Definition 8 Conditional Production

• A conditional production ˆ (,)pp L R A= → is a pair consisting of a graph

morphism p and an application condition A over L.

Definition 9 Direct Conditional Derivation

• Production p is applicable to graph G at mL G→ if |m A= . When this is the

case, the direct derivation
,p m

G H⇒ is called a direct conditional derivation

ˆ ,p m

G H⇒ .

Example 2

The above definitions are best understood with an example. Continuing with the

transformations in Example 1, we revise Production 1 to include a negative constraint,

which removes the possibility of creating duplicate consumption links between two

entities. The result is shown in Figure 10.

Production 1n:

Consumption Link Insertion

→

Figure 10. Production 1 with a negative constraint

The rephrased Production 1, called Production 1n, simply means that a consumption

link can only be added if a consumption link between the two entities does not yet

exist. The addition of the negative constraint does not change the resulting graph in

Figure 7, but it rules out the option (Object3, Process2) from the set of possible

matches.

24

4. OPD Graph Grammar

There are two possible approaches to maintaining the syntactic legality of an OPD:

1) Proactive Verification: Maintaining syntactic legality of the OPD at modeling

time by proactively verifying that each modeling operation is legal as it is being

executed by the system designer so the model is syntactically legal at any time.

This approach is fairly complicated and rather than being helpful, it often

encumbers the user, because there may be intermediate situations in which the

model needs to be temporarily inconsistent.

2) Retroactive Verification: Verifying retroactively, by user request, that the OPD

has remained syntactically legal after applying one or more modeling operations

to the OPD.

Our syntactic legality algorithm combines the proactive and retroactive verification

approaches. We limit the OPD construction process by defining transformation rules

stipulating what is and what is not permitted in OPD construction while allowing for

temporary inconsistencies and checking them periodically, as requested by the user.

This section describes a graph grammar for creating a system model in one OPD. The

zooming and folding OPM capabilities are not handled since for syntactic purposes an

OPM model that consists of many OPDs can be recursively converted into a single

OPD by "flattening" the OPD hierarchy via successive model element assignments

without loss of model information.

4.1 Preliminary Definitions

This section introduces graphical representations that abstract OPD elements and are

not available in OPM or in the OPM metamodel [35]. These representations are later

used in the definitions of the OPM graph grammar productions.

4.1.1 Abstract Link

An abstract link is an OPM link that stands for any type of concrete link that can

connect two entities in the model. Its graphical representation is a straight line drawn

between the two entities, as shown in Figure 11.

25

Abstract link between

two things

Abstract link between

a state and a thing

Figure 11. Abstract links

An abstract link specializes into an abstract structural link and an abstract procedural

link, respectively denoted with "s" and "p" along the abstract link line, as shown in

Figure 12.

Abstract structural

link

Abstract procedural

link

Figure 12. Abstract structural and procedural links

An abstract link is undirected–it has no specified direction, but a direction can be

added using an open arrowhead at one of its ends. Since in OPM this is the symbol for

the tagged structural relation, the tagged structural relations symbol is changed in the

relevant rule to a double arrowhead to remove the ambiguity.

4.2 Modeling Conventions

A negative constraint is drawn as shaded areas in the appropriate context within the

left-hand graph of the production.

Entities in the rules will be symbolized as follows:

• Thing: T (if only one appearance exists in the OPD), T1, T2 ...

• Object: O (only one appearance), O1, O2 ...

26

• Process: P (only one appearance), P1, P2 ...

• States: s (only one appearance), s1, s2 ...

This naming convention is used to properly identify the entities in a production.

Regarding duplicate thing names, we follow the OPM thing naming convention which

states that in any OPM system model there may be exactly one top-level object or

process class with any given name. Duplicate manes are allowed if and only if the

thing is a refineable (part, feature, specialization, or instance) of another thing. We

also disallow two copies of the same Thing in the same OPD.

4.3 OPD Creation Productions

Production 1 Thing Creation

There are two possible productions for the creation of a new thing in an OPD: either

there is no thing in the OPD with the same name, or there exists a thing in the OPD

with the same name but it is a refineable of an existing thing in the OPD.

The first case is fairly simple, and is shown in Figure 13.

→

Figure 13. Thing Creation production

The second case requires the existence of another thing which is the structural parent

of the thing that has the same name as the thing being added. This is shown in Figure

14.

→

Figure 14. Existing Name Thing Creation Production

Because of the limited graphical expressiveness of graph grammars, this second

production by itself can only be used if the first production did not provide a match.

The correct production (not displayed graphically) states that if there is a thing (no

match for left-hand of first production), but this thing is a structural child of another

thing (match for left-hand of second production) then the thing can be created.

27

Production 2 State Creation

This production, shown in Figure 15, is applicable only to objects. The only constraint

here is that the state is not yet a state of the object.

→

Figure 15. State Creation production

Production 3 State Removal

A state can be removed when there are no links connected to it. The production for

this rule is shown in Figure 16.

→

Figure 16. State Removal production

This production makes use of the abstract link, which can be of any possible type

allowed by the OPD syntax.

Production 4 Thing Removal

This production is applied to remove a thing from an OPD. As Figure 17 shows, the

thing to be removed must not have any link connected to it.

→ ∅

Figure 17. Thing Removal production

Production 5 Link Creation

On top of the semantic differences between the two link types, structural and

procedural, they also differ syntactically and therefore are handled separately.

Furthermore, there are nuances within each link type that must be taken into account.

Production 5 is therefore divided into sub-productions to account for these

28

differences. Note that when the end of a link is connected to an object (either as

source or destination), that end can also be connected to a state within that object,

provided the OPD syntax allows for this.

Production 5.1 Structural Link Creation

Structural links connect things to express static relations. Along the Homogeneity

attribute of structural links, they are divided into two basic types: homogeneous and

non-homogeneous. Homogeneous links may connect only things of the same

persistence (i.e., two objects or two processes), while non-homogeneous links do not

have this restriction.

There is one case where there may be two homogeneous links between two things in

an OPD. This can occur when an object is both and aggregate and a generalization of

another object. This exception will be modeled in a specific rule.

Production 5.1.1 Homogeneous Structural Link Creation

There are three types of homogeneous structural links: Aggregation-Participation,

Generalization-Specialization and Classification-Instantiation. Their productions are

shown in Figure 18.

→

→

→

→

→

→

→

→

Figure 18. Homogeneous structural link creation productions

29

The only constraint for structural links (not only homogeneous) is that only one

structural link can connect two Things.

There are two special cases of structural links that do not conform to the previous

rules. One special case is the loop link, where a thing is connected to itself. This only

occurs for objects and aggregation-participation relations. This production is shown in

Figure 19.

→

Figure 19. Aggregation loop creation production

The second special case is the generalization-specialization link, which can link two

objects in addition to an aggregation-participation link. The production used to create

this relation is shown in Figure 20.

→

Figure 20. Generalization and Aggregation link pair creation production

Note that this rule checks that two generalization-specialization links are not created

in parallel between two things.

Production 5.1.2 Non-Homogeneous Structural Link Creation

Exhibition-Characterization is the only OPM link that is non-homogeneous, so it can

connect any two things. Therefore its production rule is fairly generic. It is shown in

Figure 21.

→

Figure 21. Non-homogeneous structural link creation production

Production 5.2 Procedural Link Creation

30

Procedural links are the elements in OPM that enable the indication of something

dynamic that happens in the system. Except for one procedural link (the invocation

link) all the procedural links connect an object with a process. The primary constraint

for creating a procedural link is that only one procedural link can connect two things

in an OPD.

The productions for creating procedural links are divided into four groups: Object-to-

Process, Process-to-Object, Bi-Directional, and Invocation.

Production 5.2.1 Object-to-Process Link Creation

Object-to-Process links include the agent, instrument and consumption links. The

source of each one of these links is an object and their destination is a process. The

productions for creating these links are shown in Figure 22.

→

→

→

Figure 22. Object-to-Process link creation productions

Production 5.2.2 Process-to-Object Link Creation

Process-to-Object links are links whose source is a process and target is an object. The

result link is the only OPM link of this type. The production rule to add this link is

shown in Figure 23.

→

Figure 23. Process-to-Object link creation production

Production 5.2.3 Bidirectional Procedural Link Creation

Although our definition of the OPM graph does not allow for bi-directional links (i.e.,

every link must have a source and a target), there is one procedural OPM link that is

bi-directional – the effect link. Since the direction of the link is irrelevant, it can be

31

modeled as a link whose source is the object and the target is the process. The

production for this link is shown in Figure 24.

→

Figure 24. Bidirectional procedural link creation production

Production 5.2.4 Invocation Link Creation

The invocation link connects two processes. The production used to create this link is

shown in Figure 25.

→

Figure 25. Invocation link creation production

Production 6 Link Removal

A link between two things can be removed at any time, no questions asked, as

specified by the production shown in Figure 26.

→

Figure 26. Link removal production

Note the use of the generic link notation, which matches any kind of link that may

connect T1 to T2.

32

5. OPD Abstraction

The purpose of OPD abstraction is to validate the model shown in a single OPD. The

validation of the model is done by searching for illegal constructs during the

abstraction process. If the algorithm does not find any illegal constructs, the OPD is

valid in OPM syntax and semantics.

This work is applicable to a single OPD. Note that a single OPD may contain a full

model or only a part of a greater system model with other interconnected OPDs.

The word abstraction is used in this context differently than in OPM, therefore it

needs to be clarified. The word abstraction is used to denote reduction of the amount

information, while trying to minimize the semantic information that is lost in the

process. In the context of an OPD, an element of the OPD is (or can be) abstracted to

(or by) another element in the OPD if the new element does not contradict the

meaning of the original element, and in addition, there is no other element that can

change it without loosing more semantic information. The best way to understand this

is by an example, shown in Figure 27.

Figure 27. Abstraction of a simple OPM link

The left hand side diagram of Figure 27 shows that O1 is an instrument of P1. The

semantics of this is that O1 is required for P1's execution. The right hand side diagram

changes the instrument link to an effect link. Semantically, an effect link also denoted

that P1 requires O1, but it adds more information, by defining that it also changes O1.

Therefore effect link can abstract instrument link.

A more complex and realistic example is shown in Figure 28.

Figure 28. Abstraction of the link of a part

33

The left hand side diagram of Figure 28 shows that O1 consists of O2, and O2 is

consumed by P1. The semantics in this case is trivial. The middle diagram shows an

intermediate step in the abstraction process, since the amount of information in the

diagram has not been greatly reduced. Semantically, this diagram shows that O1 is

changed by P1. Since O1 consists of O2, the meaning of the original diagram is not

contradicted, but information on the specific change done to O1 has been lost. The

right hand diagram finally reduces the amount of information by deleting O2 from the

diagram. The new diagram does not contradict the original diagram and it also

contains the semantic information that was initially shown, while some of the

information has been lost. This is the meaning of abstraction.

The abstraction of the OPM Model is done by successively applying graph grammar

productions to the OPD until no further abstraction can be done (no production rule

can be applied). We call the resulting model the final abstraction of the OPD. Even

though the final abstraction of the OPD is valid as an OPM model, it must be checked

by the modeler because only the modeler can validate that the semantics of this model

matches the semantics she or he wanted it to represent.

5.1 Notation

5.1.1 Temporary Link

Throughout the execution of the OPD abstraction algorithm, new temporary links

between existing things in the OPD may be added. Temporary links are links that do

not exist in the original OPD; they are added by the OPD abstraction algorithm to

denote links whose type can be changed by the algorithm, unlike links that exist in the

original OPD and cannot be changed. The semantics of a temporary link is the same

as that of its regular counterpart. Graphically, it is denoted with the same edge symbol

as its regular link counterpart and a curved (rather than straight) line, as in Figure 29

which shows two temporary links: an instrument link and a result link.

Figure 29. Temporary instrument link (left) and result link (right)

In some productions the link can be either temporary or regular, i.e., one that existed

in the original OPD or exists as a result of an abstraction round. In these cases the link

34

is shown as a superposition of the two notations, as shown in Figure 30. This is a

shorthand notation used instead of two productions, one for a temporary link and one

for an original link.

Figure 30. Superpositioned temporary and regular links together

5.1.2 Modeling Height

Modeling height of a thing denotes how far in the modeling chain is the thing in the

OPD. Formally, the modeling height (or height for short) of a thing is greatest

Hamiltonian distance (as defined in [7]) of this thing from all the things that have no

structural parent. The term structural parent of a thing, used in the algorithm, denotes

another thing that is the source of a structural link that ends at the first thing. The

height of a thing that has no structural parent in is defined to be 0.

The following simple algorithm calculates the height of all the things in an OPD.

Algorithm 1 Thing Height Calculation

• Set height(thing) = null for all things in the OPD.

• While exists thing where height(thing) = null

• Select thing with no structural parents. If there is no such thing, select thing

for which all structural parents have height(thing) ≠ null

• If thing has no structural parents

• Set height(thing) = 0

• Else

• Set height(thing) = max(height({T})) +1 where T is the set of all

structural parents of thing.

Figure 31 shows an example of the height calculation in a sample OPD.

35

Initial Graph Iteration 1

Iteration 2 Iteration 3

Iteration 4 Iteration 5

36

Iteration 7 – Final Iteration

Figure 31. Calculating the things' height

It is clear that from the definition of the algorithm, the height of the child of a thing is

always greater than the height of its parent. Furthermore, the algorithm calculates the

height for all of the things in the diagram, and will always finish since it calculates the

height only once for each thing.

5.2 Aggregation and Exhibition Abstraction

The OPD abstraction algorithm is based on specific OPD graph grammar productions,

which are divided into four groups: State Change Abstraction, State-Specified Link

Abstraction, Procedural Abstraction, and Thing Removal. These productions are

specified below at the end of each one of the four algorithm steps. At the end of each

algorithm round the algorithm checks for Illegal Constructs. These states are also

described after the description of the algorithm. Formally, the OPD Abstraction

Algorithm is as follows:

Algorithm 2 OPD Abstraction Algorithm

• Input: OPD; Output: abstracted OPD

1. While OPD contains unmarked things:

1.1. Select thing having max(height(thing)) from all unmarked things in the

OPD and have no outgoing structural links.

1.2. Convert each temporary link that starts at thing to a regular link.

1.3. Apply to thing the State Change Abstraction production if applicable, as

many times as possible.

1.4. Apply to thing State-Specified Link Abstraction production if applicable,

as many times as possible.

1.5. Apply to thing Procedural Abstraction production if applicable, as many

times as possible.

1.6. Check thing for Illegal Constructs. If Illegal Constructs exist, break and

return failure on thing.

1.7. Apply to thing the Thing Removal production if applicable. If the

production is not applicable, mark thing.

2. Transform all temporary links in the OPD to regular links.

37

3. End.

5.3 Graph Grammar Productions for Aggregation and Exhibition

5.3.1 State Change and State-Specified Link Abstraction

Both of the following productions are used to transfer the procedural links that start at

a state to start at the object that owns the state.

Production 7 State Change Abstraction

The first production applied in the OPD Abstraction Algorithm abstracts state changes

of an object. This is done as the first step of the algorithm because otherwise the link

remaining from an input-output pair may be interpreted as consumption or a result

link. The production is shown in Figure 32.

→

Figure 32. State change abstraction production

Production 8 State-Specified Link Abstraction

A state-specified link is a procedural link that starts or ends at a state within an object

and is not part of an input-output pair. A state-specified link can be abstracted by

migrating its end that touches the state such that it will touch the object that owns

(contains) the state. Then the state can be removed.

→

Figure 33. State-Specified Link Abstraction production

Note the use of an abstract procedural link in the production, which means that it can

apply to any procedural link.

5.3.2 Procedural Abstraction

The following productions abstract procedural links while maintaining at least an

approximation of the original model intent prior to applying structural productions.

While this work is syntax-oriented, the productions are determined such that during

abstraction, the semantics expressed in the OPD is preserved or abstracted.

38

The goal of these productions is to abstract procedural links in the structural construct

of the OPD. For example, suppose object Assembly Line consists of objects Parts Set

and Machinery, and process Assembling consists of processes Part Assembling and

Using, having the two procedural links as shown in Figure 34.

Figure 34. Assembly Line OPD before abstraction

Parts Set is consumed by Part Assembling and Machinery is affected by Using. The

abstraction of this OPD should show only Assembly Line and Assembling, but if the

rest of the diagram is simply deleted, the final result does not reflect the procedural

relations between the respective parts of Assembly Line and Assembling. Therefore,

the relations between Parts Set and Part Assembly and between Machinery and Using

must be "upgraded", or transferred upwards to their respective aggregates Assembly

Line and Assembling.

Starting with Machinery, a change in a part object–an object which is a part of

another aggregate object (which is the whole) implies change in its aggregate object–

the whole. In other words, if Using affects Machinery then Using affects Assembly

Line. Furthermore, since Using is part of Assembling then Assembling affects

Assembly Line.

Next, Parts is abstracted in the same fashion. Consumption of a part object means

change of the aggregate object, therefore Assembly Line is affected by Part

Assembling and since Parts Set is part of Assembling, Assembly Line is affected by

Assembling. The result of the abstraction process is shown in Figure 35

Figure 35. OPD after abstraction

Procedural abstraction can be done when two entities of the same persistence are

connected with an aggregation-participation or an exhibition-characterization link.

39

generalization-specialization links and classification-instantiation links are treated

differently and do not count in this abstraction process.

For categorization purposes, the productions are divided into two main groups

depending on the kind of link that connects the two entities: aggregation-participation

and exhibition-characterization. Each is further divided into two groups: object-based

abstractions, in which productions are applied to objects, and process-based

abstraction, in which productions are applied to processes. The productions are further

divided into groups by the link that is being abstracted.

Although productions can be applied to any match that occurs in the OPD that is

being abstracted, the abstraction algorithm defines a specific order, which is dictated

by the thing that the algorithm selects in step 1.1. The match for the applied

production in the abstraction process must map thing either to O2, if thing is an

object, or to P2, if thing is a process. For example, suppose the source diagram is the

diagram shown in Figure 34 and the thing selected by the current iteration of the

abstraction algorithm is Machinery. A possible production that can be applied to the

diagram is Production 9.2.1, which is shown in Figure 36. Production 9.2.1

→

Figure 36. Production 9.2.1 – Promotion of Part Effect to Aggregate Effect

As stated above, the selected thing must be mapped to O2, that is, Machinery must be

mapped to O2. Continuing from this, the only available match for the diagram will

map Assembly Line to O1 and Using to P. The match is shown in Figure 37.

Figure 37. Match in Assembly Line OPD for Production 9.2.1

40

5.3.2.1 Aggregation-Participation Based Procedural Link

Abstraction

The following productions define the abstraction of procedural links that start at part-

things. They are divided into subcategories for classification purposes: Object-based

productions—both the part and the aggregate are objects, Process-based

productions—both the part and the aggregate are processes, and Mixed-productions—

where one of the things is an object and the other is a process.

Each production is shown as a graph grammar production. The semantic rationale

behind the production is explained below its graphical definition.

Production 9 Aggregation Object-Based Productions

Production 9.1 Consumption Link Abstraction Productions

Production 9.1.1 Promotion of Part Consumption to Aggregate Effect

→

Consumption of a part object affects the aggregate object. Since in the diagram there

is no specified relation between O1 and P, the fact that it is affected by P must be

added to the diagram. After this is done, the link between O2 and P is removed.

Production 9.1.2 Part Consumption Removal via Consumption

→

Consumption of an aggregate means optional but not mandatory consumption of some

subset of its parts. Because of this, the link between O2 and P is abstracted by the link

between O1 and P, and is removed.

Production 9.1.3 Part Consumption Removal via Result

41

→

Yielding an aggregate means changing it, and might involve consumption of a part of

it, therefore the link between O2 and P is removed.

Production 9.1.4 Part Consumption Removal via Effect

→

Effect on an aggregate can abstract consumption of a part, therefore the consumption

link between O2 and P is removed.

Production 9.1.5 Part Consumption Removal while Upgrading Instrument to Effect

→

Consumption of a part means change to the aggregate. Since the link between O1 and

P was created by the abstraction algorithm, its kind can be changed as long as its new

kind expands the meaning of the original link (this is referred in this work as

"upgrading"). .In this case, the instrument link can be upgraded to an effect, and the

link between O2 and P is then removed.

Production 9.1.6 Part Consumption Removal via Agent

→

An agent link defines that an object is the human (or group of humans) handler of a

process. While not specifically stated, an agent may also be affected by the process.

Since consumption of a part is abstracted by effect to its aggregate, and the agent link

abstracts effect, the link between O2 and P is removed.

42

Production 9.2 Effect Link Abstraction Productions

Production 9.2.1 Promotion of Part Effect to Aggregate Effect

→

Effect caused to a part object means effect to the aggregate object. Since in the

diagram there is no specified relation between O1 and P, the fact that it is affected by

P must be added to the diagram. After this is done, the link between O2 and P is

removed.

Production 9.2.2 Part Effect Removal via Consumption

→

Effect on a part object is abstracted by effect on the aggregate of the object.

Furthermore, effect on an object can be abstracted by consumption. Therefore the link

between O2 and P is removed.

Production 9.2.3 Part Effect Removal via Effect

→

Effect caused to a part object is trivially abstracted as effect caused to the aggregate.

Therefore the link between O2 and P is removed.

Production 9.2.4 Part Effect Removal via Result

→

43

Effect on a part object is abstracted by effect on the aggregate of the object.

Furthermore, effect on an object can be abstracted by result. Therefore the link

between O2 and P is removed.

Production 9.2.5 Part Effect Removal via Agent

→

As stated before, and agent link may also includes change to the agent object. Effect

on a part object is abstracted by effect on its aggregate and this is abstracted by the

agent link. Therefore the link between O2 and P is removed.

Production 9.2.6 Part Effect Removal while Upgrading Instrument to Effect

→

Effect on a part object is abstracted by effect on the aggregate. Since the relation

between O1 and P was created by the algorithm, it is upgraded to an effect link for it

to abstract the effect on the part object. After this, the link between O2 and P is

removed.

Production 9.3 Result Link Abstraction Productions

Production 9.3.1 Promotion of Part Result to Aggregate Effect

→

Result of a part object means effect on the aggregate object. Since in the diagram

there is no specified relation between O1 and P, the fact that it is affected by P must

be added to the diagram. After this is done, the link between O2 and P is removed.

Production 9.3.2 Part Result Removal While Upgrading Instrument to Effect

44

→

Result of a part object means effect to the aggregate object. Because the link between

O1 and P was created by the algorithm, it is upgraded to an effect link so it correctly

abstracts the result link. After this is done, the link between O2 and P is removed.

Production 9.3.3 Part Result Removal via Effect

→

As stated before, result of a part object means change to its aggregate, therefore the

link between O2 and P is correctly abstracted and is removed.

Production 9.3.4 Part Result Removal via Result

→

Result of a part is trivially abstracted by result of the aggregate object. Therefore the

link between O2 and P is removed.

Production 9.3.5 Part Result Removal via Consumption

→

Consuming an aggregate means change to it, the same as consumption of a part of it

therefore the link between O2 and P is removed because it is correctly abstracted.

Production 9.3.6 Part Result Removal via Agent

45

→

Result of a part object means change to its aggregate. Since an agent link also

represents optional change to the agent, the result link between O2 and P is correctly

abstracted and is removed.

Production 9.4 Agent Link Abstraction Productions

Production 9.4.1 Promotion of Part Agent to Aggregate Agent

→

If a part object is an agent of a process, the aggregate object is also an agent,

otherwise information is lost. Since there is no link between O1 and P, this link is

added and the link between O2 and P is removed.

Production 9.4.2 Part Agent Removal via Consumption

→

This is the first production where some information is lost without being abstracted.

Semantically, if a part is an agent of a process, and aggregate agent abstracts this. But

in this diagram the aggregate is consumed by the process. Because consumption is a

very strong operation, changing it will create a greater loss of information. Therefore

after some discussions, declaring the source diagram an illegal construct seemed too

drastic and it was decided that the agent link is abstracted by the consumption link,

even though the best possibility would be to allow duplicate links between an object

and a process in this case, something that is not currently allowed in OPM.

Semantically, this can happen for example if a person is part of a department and the

department is then dismantled.

Production 9.4.3 Part Agent Removal while Upgrading Effect to Agent

46

→

As noted, and agent also includes effect, but effect does not abstract agent, therefore

the link between O1 and P is upgraded and after this the link between O2 and P is

removed.

Production 9.4.4 Part Agent Removal via Result

→

Like Production 9.4.2, this production is also controversial, but as was done there, the

decision was done to allow this mixture while loosing some of the information in the

OPD.

Production 9.4.5 Part Agent Removal via Agent

→

An agent link in the aggregate trivially abstracts agent link or its parts, therefore the

link between O2 and P is removed.

Production 9.4.6 Part Agent Removal while Upgrading Instrument to Agent

→

The instrument link in the aggregate does not abstract the agent link of its parts, but

since it was created by the abstraction algorithm, it can be upgraded to an agent link,

and after this the link between O2 and P is removed.

Production 9.5 Instrument Link Abstraction Productions

Production 9.5.1 Promotion of Part Instrument to Aggregate Instrument

47

→

If a part object is an instrument of a process, the aggregate object is also an

instrument, otherwise information is lost. Since there is no link between O1 and P,

this link is added and the link between O2 and P is removed.

Production 9.5.2 Part Instrument Removal via Consumption

→

Consumption of an aggregate abstracts the requirement of its parts (instruments)

therefore the link between O2 and P is removed.

Production 9.5.3 Part Instrument Removal via Effect

→

Effect caused to an aggregate abstracts the requirement of its parts (instruments)

therefore the link between O2 and P is removed.

Production 9.5.4 Part Instrument Removal via Result

→

Result of an aggregate abstract requirement of its parts (instruments) therefore the link

between O2 and P can be removed.

This production may seem strange since it shows that a process uses part of an object

at the same time that it creates it. But in OPM the parts of a thing are independent of

the thing itself, so this can occur. Furthermore, since this is an abstraction of a larger

diagram, what may happen is that O1 is created by a sub-process of P and afterwards

48

another sub-process of P uses O2 as an instrument. Once again, the abstraction

process causes loss of information.

Production 9.5.5 Part Instrument Removal via Agent

→

An aggregate that is agent to a process abstracts that a part of it is instrument to the

process, therefore the link between O2 and P is removed.

Production 9.5.6 Part Instrument Removal via Instrument

→

An aggregate that is instrument to a process trivially abstracts that a part of it is also

instrument to the process, therefore the link between O2 and P is removed.

Production 10 Aggregation Process-Based Productions

Production 10.1 Result Link Abstraction Productions

Production 10.1.1 Promotion of Part Result to Aggregate Result

→

If a part of a process yields an object, the correct abstraction in the aggregate is also to

yield the object. Since there is no link between P1 and O, this link is added and the

link between P2 and O is removed.

Production 10.1.2 Part Result Removal via Result

→

49

An aggregate that yields an object abstract that a part of it yields it, therefore the link

between P2 and O is removed.

Production 10.1.3 Part Result Removal while Upgrading Effect to Result

→

An aggregate that affects an object does not abstract that the object is yielded by a

part of it, but since the link between P1 and O was created by the abstraction

algorithm, it can be upgraded to a result link. After this the link between P2 and O is

deleted.

Production 10.1.4 Part Result Removal while Upgrading Instrument to Result

→

An aggregate that requires an instrument object does not abstract that a part of it

yields the object, but since the link between P1 and O was created by the abstraction it

can be upgraded to a result link. After this the link between P2 and O is deleted.

Production 10.1.5 Part Result Removal while Upgrading Agent to Result

→

Like in the previous object-based productions including agent and consumption/result

links, this case is also problematic. It was decided that a process that requires and

agent object does not abstract that a part of the process yields the object, but that the

agent link can be upgraded to a result link, this allowing the abstraction. After this the

link between P2 and O is removed.

Production 10.2 Consumption Link Abstraction Productions

Production 10.2.1 Promotion of Part Consumption to Aggregate Consumption

50

→

If a part of a process consumes an object, the correct abstraction in the aggregate is

also to consume the object. Since there is no link between P1 and O, this link is added

and the link between P2 and O is removed.

Production 10.2.2 Part Consumption Removal while Upgrading Instrument to

Consumption

→

An aggregate that requires an instrument object does not abstract that a part of it

consumes the process, but since the instrument link was created by the abstraction

process it can be upgraded to a consumption link, and then the link between P2 and O

can be removed.

Production 10.2.3 Part Consumption Removal while Upgrading Effect to

Consumption

→

Effect caused by an aggregate does not abstract consumption by a part, but since the

link was created by the abstraction algorithm, it can be upgraded to a consumption

link and then the link between P2 and O can be removed.

Production 10.2.4 Part Consumption Removal via Consumption

→

51

Consumption by an aggregate trivially abstract consumption by a part of it, therefore

the link between P2 and O can be removed.

Production 10.2.5 Part Consumption Removal while Upgrading Agent to

Consumption

→

Like in the previous productions including agent and consumption/result links, this

case is also problematic. It was decided that a process that requires and agent object

does not abstract that a part of the process consumes the object, but that the agent link

can be upgraded to a result link, this allowing the abstraction. After this the link

between P2 and O is removed.

Production 10.3 Effect Link Abstraction Productions

Production 10.3.1 Promotion of Part Effect to Aggregate Effect

→

If a part of a process affects an object, the correct abstraction in the aggregate is also

to affect the object. Since there is no link between P1 and O, this link is added and the

link between P2 and O is removed.

Production 10.3.2 Part Effect Removal via Result

→

An aggregate that yields an object correctly abstract that a part of it affects the object,

so the link between P2 and O is abstracted and can be removed.

Production 10.3.3 Part Effect Removal via Effect

52

→

Effect caused by an aggregate trivially abstracts effect caused by a part of it, therefore

the link between P2 and O can be removed.

Production 10.3.4 Part Effect Removal via Consumption

→

An aggregate process that consumes an object correctly abstract that a part of it also

affects the object, so the link between P2 and O is abstracted and can be removed.

Production 10.3.5 Part Effect Removal via Agent

→

As stated before, an agent link implies optional effect to the object, therefore the

aggregate process P1 implies optional effect to O, which abstract effect caused by P2,

so the link between P2 and O is removed.

Production 10.3.6 Part Effect Removal while Upgrading Instrument to Effect

→

An instrument link in the aggregate does not abstract effect caused by a part, but since

the link was created by the algorithm, it can be upgraded to an effect link. After this

the link between P2 and O is removed.

Production 10.4 Agent Link Abstraction Productions

Production 10.4.1 Promotion of Part Agent to Aggregate Agent

53

→

If an object is an agent of a part process, it is also required as an agent by the parent of

the process. Since this is not stated by the diagram, the link is added and the link

between P2 and O can be removed.

Production 10.4.2 Part Agent Removal via Result

→

As all production involving mixes of agent and consumption/yielding, this production

is not straightforward. As before, the result link is chosen as the one with more

information an as such it is defined as abstracting the agent link, therefore the link

between P2 and O is removed.

Production 10.4.3 Part Agent Removal while Upgrading Effect to Agent

→

An effect link in the aggregate does not abstract the agent link in the part, but since

the effect link was created by the abstraction process, it can be upgraded to an agent

link. After this the link between P2 and O is removed.

Production 10.4.4 Part Agent Removal via Consumption

→

As other productions involving mixes of agent and consumption/yielding, this

production is not straightforward. It was decided as before that the consumption link

54

is the one with the most information and as such it abstracts the link between P2 and

O, so it can be removed.

Production 10.4.5 Part Agent Removal via Agent

→

An agent link to an aggregate process trivially abstract an agent link to a part,

therefore the link between P2 and O can be removed.

Production 10.4.6 Part Agent Removal while Upgrading Instrument to Agent

→

An instrument link to the aggregate process does not abstract the instrument link to

the part process, but since the instrument link was created by the abstraction process,

it can be upgraded to an agent link. After this the link between P2 and O is removed.

Production 10.5 Instrument Link Abstraction Productions

Production 10.5.1 Promotion of Part Instrument to Aggregate Instrument

→

If an object is an instrument of a part process, it is also required as an instrument by

the parent of the process. Since this is not stated by the diagram, the link is added and

the link between P2 and O can be removed.

Production 10.5.2 Part Instrument Removal via Result

→

55

Yielding of an object by an aggregate process abstracts that a part of a process

requires the object, therefore the link between P2 and O can be removed. This

production could be seen as illegal, since how can a part process require an object that

is created by the aggregate? Therefore the link that connects P1 and O is the

abstraction of all the link of P1's parts. One part of P1 yields O while another one uses

it as an instrument, so the most important link in the process is the result link. While

this abstraction may be correct, the model can be built so as to require O before it is

created, and this is semantic error is not checked by the abstraction algorithm.

Production 10.5.3 Part Instrument Removal via Effect

→

Effect caused by an aggregate process abstracts that a part of the process uses the

affected object as an instrument, so the link between P2 and O is removed.

Production 10.5.4 Part Instrument Removal via Consumption

→

Consumption of an object by an aggregate process abstracts that a part of a process

requires the object, therefore the link between P2 and O is removed.

Production 10.5.5 Part Instrument Removal via Agent

→

An instrument link to the aggregate process abstract the instrument link to the part

process, so the link between P2 and O is removed.

Production 10.5.6 Part Instrument Removal via Instrument

56

P1

P2

O

→

P1

P2

O

An instrument to the aggregate process trivially abstracts instrument to a part process,

so the link between P2 and O is removed.

5.3.2.2 Exhibition-Characterization Based Procedural Link

Abstraction Productions

The main difference between an object which is a part and an object which is an

attribute is that a part exists by itself independently of the object that aggregates it. In

contrast, an attribute characterizes the exhibiting object and does not exist separately

from it. Therefore attributes cannot be consumed or produced and can only be

affected by processes, which change their state (value), or used as enablers (agents or

instruments) by processes. For all the abstraction purposes attributes are the same as

part objects. The productions for attributes are also divided into groups by the link

that is deleted, like those for part objects and are shown below. The rationale behind

the productions here is the same as the rationale of the aggregation-participation

productions, therefore it will not be repeated here.

Production 11 Exhibition Object-Based Productions

Production 11.1 Effect Link Abstraction Productions

Production 11.1.1 Promotion of Attribute Effect to Exhibitor Effect

→

Production 11.1.2 Attribute Effect Removal via Consumption

57

→

Production 11.1.3 Attribute Effect Removal via Effect

→

Production 11.1.4 Attribute Effect Removal via Result

→

Production 11.1.5 Attribute Effect Removal via Agent

→

Production 11.1.6 Attribute Effect Removal while Upgrading Instrument to Effect

→

Production 11.2 Agent Link Abstraction Productions

Production 11.2.1 Promotion of Attribute Agent to Exhibitor Agent

58

→

Production 11.2.2 Attribute Agent Removal via Consumption

→

Production 11.2.3 Attribute Agent Removal while Upgrading Effect to Agent

→

Production 11.2.4 Attribute Agent Removal via Result

→

Production 11.2.5 Attribute Agent Removal via Agent

→

O1

O2

P

59

Production 11.2.6 Attribute Agent Removal while Upgrading Instrument to Agent

→

Production 11.3 Instrument Link Abstraction Productions

Production 11.3.1 Promotion of Attribute Instrument to Exhibitor Instrument

→

Production 11.3.2 Attribute Instrument Removal via Consumption

→

Production 11.3.3 Attribute Instrument Removal via Effect

→

Production 11.3.4 Attribute Instrument Removal via Result

→

60

Production 11.3.5 Attribute Instrument Removal via Agent

→

Production 11.3.6 Attribute Instrument Removal via Instrument

→

Production 12 Exhibition Process Based Rules

Production 12.1 Result Link Abstraction Productions

Production 12.1.1 Promotion of Attribute Result to Exhibitor Result

→

Production 12.1.2 Attribute Result Removal via Result

→

Production 12.1.3 Attribute Result Removal while Upgrading Effect to Result

→

61

Production 12.1.4 Attribute Result Removal while Upgrading Agent to Result

→

Production 12.1.5 Attribute Result Removal while Upgrading Instrument to Result

→

Production 12.2 Consumption Link Abstraction Productions

Production 12.2.1 Promotion of Attribute Consumption to Exhibitor Consumption

→

Production 12.2.2 Attribute Consumption Removal while Upgrading Effect to

Consumption

→

Production 12.2.3 Attribute Consumption Removal via Consumption

62

→

Production 12.2.4 Attribute Consumption Removal while Upgrading Agent to

Consumption

→

Production 12.2.5 Attribute Consumption Removal while Upgrading Instrument to

Consumption

→

Production 12.3 Effect Link Abstraction Productions

Production 12.3.1 Promotion of Attribute Effect to Exhibitor Effect

→

Production 12.3.2 Attribute Effect Removal via Result

→

63

Production 12.3.3 Attribute Effect Removal via Effect

→

Production 12.3.4 Attribute Effect Removal via Consumption

→

Production 12.3.5 Attribute Effect Removal via Agent

→

Production 12.3.6 Attribute Effect Removal while Upgrading Instrument to Effect

→

Production 12.4 Agent Link Abstraction Productions

Production 12.4.1 Promotion of Attribute Agent to Aggregate Agent

→

64

Production 12.4.2 Attribute Agent Removal via Result

→

Production 12.4.3 Attribute Agent Removal while Upgrading Effect to Agent

→

Production 12.4.4 Attribute Agent Removal via Consumption

→

Production 12.4.5 Attribute Agent Removal via Agent

→

Production 12.4.6 Attribute Agent Removal while Upgrading Instrument to Agent

→

65

Production 12.5 Instrument Link Abstraction Productions

Production 12.5.1 Promotion of Attribute Instrument to Exhibitor Instrument

→

Production 12.5.2 Attribute Instrument Removal via Result

→

Production 12.5.3 Attribute Instrument Removal via Effect

→

Production 12.5.4 Attribute Instrument Removal via Consumption

→

Production 12.5.5 Attribute Instrument Removal via Agent

→

66

Production 12.5.6 Attribute Instrument Removal via Instrument

→

5.3.2.3 Mixed Thing Based Procedural Link Abstraction Productions

Structural relations are not limited to relations between thing of the same kind, but can

also exist between different kinds of things – objects and processes. The abstraction of

these relations is treated here using graph grammar productions. The productions are

divided into two kinds: object-to-process productions (where the object is the parent

of the structural relation) and process-to-object productions (where the process is the

parent of the structural relation).

Production 13 Object-to-Process Productions

Production 13.1 Object Exhibiting Process Procedural Link Abstraction Production

→

The only valid relation between an object and a process where the object is the parent

of the relation is the exhibition-characterization relation. In this case the process is

called the operation of the object. This relation can only be abstracted if the exhibited

process is connected to an object which is itself part of the parent object.

A procedural link that links P with its parent O1, (the exhibitor of P) can be

abstracted as shown above. This production can be used because all of the links

connected to the components of O1 are abstracted and become connected to O1. The

production takes any procedural link and removes it from the model, when the final

goal is to abstract P into O1.

If the process is connected to an unrelated object, it cannot be abstracted. This can be

seen in the example on Figure 38.

67

Figure 38. Object exhibiting process

O2 is produced by P, and O1 exhibits P, and there is no structural relation that makes

O2 a part of O1.

Production 14 Process-to-Object Productions

Production 14.1 Process Exhibiting Object Procedural Link Abstraction Production

→

An object exhibited by a process is an attribute of the process. Because of this, all

operations done on the process by the object are abstracted by the process itself and

are therefore removed from the diagram.

5.3.2.4 OR and XOR conditions

OR and XOR conditions are additional constructs that can occur at the end of a

procedural link and denote that only one of the procedural links need to occur (XOR

compels that only one of them occur while OR may accept both). The treatment of

these conditions is identical for all kinds of links therefore it is shown here only once,

to refrain from repeating all the abstraction productions for each of these conditions.

Furthermore, OR and XOR are treated exactly the same. They are therefore

commonly denoted by adding x along the small arc of the OR link. There are two

cases of OR and XOR condition abstraction: the condition occurs with a procedural

link that starts on the parent of the abstracted link (parent OR/XOR), or it occurs with

a procedural link that starts at another entity (other OR/XOR). For completeness,

object-based the productions will also be shown embedded in Production 9.1.2 giving

a further example. All other productions are created similarly.

Production 15 Parent OR/XOR – Object Based Procedural Link Abstraction

Productions

68

→

→

O1 consists/exhibits O2 and both are linked to P with an OR relation. Since the link

that originally started at O2 is abstracted by the link that starts at O1 the OR relation

becomes meaningless.

Embedding the above production into Production 9.1.2 results in the new production

shown below.

→

Figure 39. Example embedding of Parent OR/XOR production in an Object-

Based Procedural Link Abstraction production.

Production 16 Parent OR/XOR – Process Based Procedural Link Abstraction

Productions

→

69

→

Same as above, using processes this time.

Production 17 Other OR/XOR – Object Based Procedural Link Abstraction

Productions

→

→

The OR relation is not with a link from the aggregate/exhibitor of O2 but from

another thing O3. Since at the end of the production the link between O1 and P

abstracts the original link between O2 and P then the OR relation now occurs with the

link starting at O1.

Embedding the above production into Production 9.1.2 results in the new production

shown below.

→

Production 18 Other OR/XOR – Process Based Procedural Link Abstraction

Productions

70

→

→

Same as above, using processes this time.

5.3.3 Illegal Constructs

Illegal constructs are OPM constructs that create invalid or contradictory meaning in

the OPD.

The OPD in Figure 40 shows an example of an illegal construct. Object1 is an

instrument to Process1, and Object2 is consumed by Process1. This is problematic

semantically because Object1 is changed by Process1. Therefore this construct is

not allowed in the OPD.

Figure 40. Illegal construct example

Following are shown all the illegal constructs in OPM that can occur in the local

context of the abstraction algorithm. After each construct a brief explanation is given

on the rationale behind the illegality of the construct.

Note that there are many more illegal constructs that can occur in a non-local context,

but they are irrelevant to this work since the abstraction algorithm only works in a

local context. Furthermore, it can be shown that an illegal context that occurs in a

non-local context will also appear in a local context in the abstraction algorithm.

Illegal Construct 1 Part Consumption and Aggregate Instrument

71

The consumption link between P and O2, that signifies change to O1, contradicts the

instrument link between O1 and P, which signifies no change to O1.

Illegal Construct 2 Part/Attribute Effect and Aggregate/Exhibitor Instrument

The effect link between P and O2, that signifies change to O1, contradicts the

instrument link between O1 and P, which signifies no change to O1.

Illegal Construct 3 Aggregate Instrument and Part Result

The result link between P and O2, that signifies change to O1, contradicts the

instrument link between O1 and P, which signifies no change to O1.

Illegal Construct 4 Aggregate/Exhibitor Effect and Part/Attribute Agent

The effect link between O1 and P does not reflect the fact that a part/attribute of O1 is

an agent of P.

Illegal Construct 5 Aggregate/Exhibitor Instrument and Part/Attribute Agent

72

The instrument link between O1 and P does not reflect the fact that a part/attribute of

O1 is an agent of P.

Illegal Construct 6 Aggregate/Exhibitor Consumption and Part/Attribute Result

The consumption link between P1 and O contradicts the fact that O is yielded by a

part of P1.

Illegal Construct 7 Aggregate/Exhibitor Effect and Part/Attribute Result

The effect link between P1 and O does not reflect the fact that O is yielded by a

part/attribute of P1.

Illegal Construct 8 Aggregate/Exhibitor Instrument and Part/Attribute Result

The instrument link between P1 and O does not reflect the fact that O is yielded by a

part/attribute of P1.

Illegal Construct 9 Aggregate/Exhibitor Agent and Part/Attribute Result

73

The agent link between P1 and O does not reflect the fact that O is yielded by a

part/attribute of P1.

Illegal Construct 10 Aggregate/Exhibitor Instrument and Part/Attribute

Consumption

The instrument link between P1 and O does not reflect the fact that O is consumed by

a part/attribute of P1.

Illegal Construct 11 Aggregate/Exhibitor Instrument and Part/Attribute

Consumption

The agent link between P1 and O does not reflect the fact that a part/attribute of P

consumes O.

Illegal Construct 12 Aggregate/Exhibitor Result and Part/Attribute Consumption

The result link between P1 and O contradicts the fact that O is consumed by a part of

P1.

Illegal Construct 13 Aggregate/Exhibitor Effect and Part/Attribute Consumption

74

The effect link between P1 and O does not reflect the fact that O is consumed by a

part/attribute of P1.

Illegal Construct 14 Aggregate/Exhibitor Instrument and Part/Attribute Effect

The instrument link between P1 and O does not reflect the fact that O is affected by a

part/attribute of P1, specifically P2.

Illegal Construct 15 Aggregate/Exhibitor Effect and Part/Attribute Agent

The effect link between P1 and O does not reflect the fact that O is an agent of P2,

therefore also an agent of P1.

Illegal Construct 16 Aggregate/Exhibitor Instrument and Part/Attribute Agent

The instrument link between P1 and O does not reflect the fact that O is an agent of

P2 and as such also an agent of P1.

Illegal Construct 17 Attribute Consumption

75

Attributes are inherent parts of a thing and as such cannot be consumed by any

process.

Illegal Construct 18 Attribute Result

Attributes are inherent parts of a thing and as such cannot be yielded by a process.

5.3.4 Thing Removal Production

The final production in the abstraction algorithm tries to remove the processed Thing

from the OPD. It checks that the Thing has no procedural link or outgoing structural

links, and if so it removes the Thing from the OPD.

Production 19 Thing Removal

The Thing that is being removed must match with T1

→

5.4 Generalization and Classification Abstraction

Until now the generalization-specialization and classification-instantiation relations

have not been considered for the sake of simplicity. To enable complete abstraction of

an OPD, these links must also be treated.

In modern programming languages, the generalization/classification relation induces

inheritance. Unlike most languages, OPM refers to processes as first class entities that

76

can exist outside of an object. This information is stored in each thing using a Thing

Type as defined below.

5.4.1 Thing Type and Type Hierarchy

For notation purposes and clarity, each modeled thing in OPM has a type
1
, and the

OPM generalization/classification relations create a type hierarchy in the system.

Formally, the Thing Type is defined as follows:

• Each modeled thing is always of a primitive type. A modeled process named

<process_name> is of type <process_name>_ptype. A modeled object named

<object_name> is of type <object_name>_otype.

• The primitive type of a thing is denoted as (_)T thing name< > .

Using the definition above, every thing that is modeled in an OPD has at least one

type, its intrinsic primitive type, which is shown in the OPD model by the

combination of the shape of the thing (rectangle or ellipse) and the name of the thing

Using the OPM generalization-specialization relation, we can define that one thing

specializes another thing, taking its features (i.e., attributes and operations), relations

and states
2
. This means that the specialized thing becomes of the type of the general

entity. Formally, when two things are connected in a generalization-specialization

relation, the specialized thing (the target of the relation) acquires the type of the

general thing (the source of the relation).

For example, suppose P1 and P2 are two processes. From the definition above,

process P1 is of type P1_ptype and P2 is of P2_ptype. Furthermore, suppose that P1

and P2 are connected with a generalization-specialization link where P1 is the source

of the link and P2 is the target of the link. Then P2 is also of type P1_ptype.

We have defined that every thing in OPM has a type, and when a complex OPM static

hierarchy is created, a thing can be of many different types. But how do we know of

what types a thing is? For this purpose we define the Type Closure of a thing. The

type closure of a thing, denoted by (_)TC thing name< > is a group of types, such

that

1
 The word type rather than class has been selected since class is used in most languages to define

objects, and this might confuse the reader.

2
 The Generalization-Specialization relation in OPM is usually called inheritance in modern object

oriented languages.

77

•
1 2

(1) (2) (1)
thing thing

TC thing TC thing T thing
< > < >

 
< > = < > < > 

 ⊳

∪∪ ,where

1 2thing thing< > < >⊳ denotes that thing1 is a thing2, as modeled in the OPD.

Furthermore, if thing1 is an instance of thing2, then

(1) (2) (1)TC thing TC thing T thing< > = < > ∪ < > .

5.4.2 Syntactic Validation of Generalization and Classification

The generalization-classification relation can link two objects or two processes. When

the relation is between two objects, there is no syntactic check that can be done, since

the structure of the things in the OPD is completely up to the modeler to decide.

When the relation links two processes, the abstraction algorithm must validate that the

"signature" or "API"
3
 of the source of the relation is maintained in the target of the

relation. The API of a process consists of all incoming and outgoing procedural links,

including the object types that are at the ends of these links. For example, Figure 41

shows an invalid OPD.

Figure 41. Invalid signature example

Process Paint requires 2D Figure and affects Canvas. Paint on Screen is a Paint,

therefore it must conform to the same signature as Paint, meaning that it must require

an object of type 2D Figure and must affect an object of type Canvas. Since this is not

the case, this OPD is invalid. A valid version of this OPD is shown in Figure 42.

2D

Figure

Square

Paint

Paint on

Screen

Canvas

Screen

3
 API – An application programming interface (API) is a source code interface that an operating system

or library provides to support requests for services to be made of it by computer programs

78

Figure 42. Valid signature abstraction

The signature of the process must be maintained, but may be expanded by creating

new links in addition to the links that already exist in the original signature.

Furthermore, the signature of a process is defined by the procedural links that are

connected to the process at modeling time before abstraction. This detail is important

since the signature of a process can change during the abstraction process in

unpredictable ways.

Square Paint on

Screen

Paint

Border

Fill

Border

Line

m

Color

Drawing

m

→

Figure 43. Example OPD before and after abstraction

Figure 43 demonstrates this. The original OPD on the left hand side yields the final

abstraction after applying all possible graph grammar productions. Interestingly, for

abstraction purposes this is correct – There is a process called Paint on Screen which

requires Drawing. On the other side, Paint on Screen is a Paint, and this means that it

requires a 2D Figure, and Drawing is never defined to be a 2D Figure. Furthermore,

there is no guarantee that at any point in the abstraction process Square will be linked

to Paint On Screen, as can be seen in the run of the abstraction algorithm on our

example in Figure 44
4
.

4
 This example run is specially tailored for the example, and although many other possible runs may

occur, this one is certainly possible.

79

Square Paint on

Screen

Paint

Border

Fill

Border

Color

Drawing

m

→

Square Paint on

Screen

Paint

Border

Fill

Color

Drawing

m

→

Square

Paint on

Screen

Paint

Border

Fill

Drawing

m

→

Paint on

Screen

Paint

Border

Fill

Drawing

→

→

Figure 44. Abstraction process example execution

Due to this reason, the signature of a process must be maintained at modeling time,

even at the cost of extra redundant links in the OPD. This is done using the Signature

Consistency Validation algorithm described below.

Algorithm 3 Signature Consistency Validation

Let P1 and P2 be two processes connected in a generalization or classification link,

where P1 is the source and P2 is the target of the link. Let 1PIL and 1POL be the sets

of all incoming and outgoing links to P1 respectively, and 2PIL and 1POL the set of

80

all incoming and outgoing links of P2 respectively. Denote by s(l) the source and t(l)

the target of link l.

• For each 1 1P Pl IL∈

• Find 2 2P Pl IL∈ such that 1 2(()) (())P PT s l TC s l∈ . If no such link exists, stop and

return error. Otherwise, remove 2Pl from 2PIL (2 2 2\{ }P P PIL IL l=).

• For each 1 1P Pl OL∈

• Find 2 2P Pl OL∈ such that 1 2(()) (())P PT t l TC t l∈ . If no such link exists, stop

and return error. Otherwise, remove 2Pl from 2POL (2 2 2\{ }P P POL OL l=).

After the algorithm above is executed, all the links that exist in P1 have been

validated, checking that they also exist in P2.

5.5 Complete OPD Abstraction Algorithm

Extending the algorithm defined in section 5.2, the following algorithm completes the

abstraction of the OPD to its minimal abstraction.

• Input: OPD

• Algorithm:

1. Calculate Type and Type Closure of all things in the OPD.

2. Validate all Process signatures by applying the Signature Consistency Validation

algorithm. If validation failed, stop and return failure on signature validation.

3. While OPD contains things that have not been processed:

3.1. Of all things in the current OPD select thing with max(height(thing)) and

no outgoing structural links.

3.2. Transform all Temporary Links that start at thing to Regular Links.

3.3. Apply State Change Abstraction production to thing if applicable, as

many times as possible.

3.4. Apply State-Specified Link Abstraction production to thing if applicable,

as many times as possible.

3.5. Apply Procedural Abstraction productions to thing if applicable, as many

times as possible.

3.6. Check Illegal Constructs on thing. If illegal constructs exist, stop and

return failure on thing.

81

3.7. Apply Thing Removal production to Thing if applicable. If the production

is not applicable, mark Thing as processed.

4. Transform all temporary links in the OPD to regular links.

5. End.

Example 3 ABS Braking OPD Abstraction

In this example we try to abstract SD1 of the ABS Ford system model example

provided by OPCAT. The OPD (flattened to remove in-zooming) is shown Figure 45.

ABS Braking OPD

ABS

Braking
ABS

Brake

Assembly

Mechanical

Subsystem

Hydraulic

Subsystem

Sensor

Subsystem

Engine

Control Unit

Power

Management

System
Velocity

Driver

Passive Active

High Zero

Braking

Boosting Signal

Detecting

Anti

Locking

Actuating

Signal

Set

Actuating

Pulse Set

Figure 45. ABS Braking OPD

In the example OPD there are thing of with heights 1 and 2. Since there are no

generalization or classification links in the diagram, the first step is to go over all the

things of height 2 and apply the abstraction steps. We first process all the objects and

then all the processes, starting with object Brake Assembly.

The first step is to transform all temporary links. Since there are none, this step is

finished. The next step is to apply State Change Abstraction. This step can be applied

to Brake Assembly using the link that starts at state Passive and ends at Breaking, and

the link that starts at state Breaking and ends at Active. The result of this step is shown

in Figure 46. Since most of the diagram remains the same, only the affected part is

shown.

82

→

Figure 46. State change abstraction on Brake Assembly

The next step is to apply State-Specified Link abstraction. There are two links that

start at a state of Brake Assembly, one that starts at state Active and ends at Boosting

and the other that starts at Active and ends at Signal Detecting. The result of this step

(one again removing unnecessary parts of the diagram) is shown in Figure 47.

→

Figure 47. State-Specified Link abstraction on Brake Assembly

The next step is Procedural Abstraction. In this step, the procedural links that connect

Brake Assembly to all other things in the diagram are "transferred" to its structural

parent, which is ABS. The current status of the diagram (removing the irrelevant

elements) is shown in Figure 48.

Figure 48. Example diagram after initial abstraction of Brake Assembly

The first link that will be abstracted is the link to Boosting. Using the productions

defined in section 5.3.2, the matching production for this case is Production 9.5.1,

shown in Figure 49.

83

→

Figure 49. Promotion of Part Instrument to Aggregate Instrument Production

The production is applied to the example diagram resulting in the diagram shown in

Figure 50.

Figure 50. Example diagram after Brake Assembly instrument link abstraction

The links from Brake Assembly to Braking and Signal Detecting are abstracted using

similar productions, creating the diagram shown in Figure 51.

Figure 51. Example diagram after all Brake Assembly links abstracted

No illegal constructs were detected on Brake Assembly, so the next step is Thing

Removal. The result of the first round of the algorithm is shown in Figure 52.

84

ABS

Braking
ABS

Mechanical

Subsystem

Hydraulic

Subsystem

Sensor

Subsystem

Engine

Control Unit

Power

Management

System

Velocity

Driver

High Zero

Braking

Boosting Signal

Detecting

Anti

Locking

Actuating

Signal

Set

Actuating

Pulse Set

Figure 52. Example diagram after first round of the abstraction algorithm

A process is abstracted using the same steps used to abstract an object. For example,

process Braking will be the one abstracted next. After transforming the temporary

links starting at it, the working diagram (removing unnecessary things) is shown in

Figure 53.

Figure 53. Example diagram before Braking process abstraction

The steps used to abstract a process are in general fewer than those used to abstract an

object since a process does not contain states. Hence the first step is Procedural

Abstraction. The result of applying this step is shown in Figure 54.

85

Figure 54. Example diagram after procedural abstraction of Braking process

After this, Braking can be removed from the full diagram, yielding the diagram shown

in Figure 55.

ABS

Braking
ABS

Mechanical

Subsystem

Hydraulic

Subsystem

Sensor

Subsystem

Engine

Control Unit

Power

Management

System

Velocity

Driver

High Zero

Boosting

Signal

Detecting

Anti

Locking

Actuating

Signal

Set

Actuating

Pulse Set

Figure 55. Example diagram after abstraction of Braking process

The abstraction process continues in the same way until there are no more things that

can be abstracted. Then, all the temporal links are transformed to regular links. The

final diagram is shown in Figure 56.

Figure 56. Final abstraction of the example diagram

86

6. Coverage

This work has treated the abstraction of many of the existing constructs in OPM.

Nonetheless, there are some that have only been treated partially and some that have

not been treated at all. This section reviews what has been treated, what not, and why.

6.1 Structural Relations

All types of structural relations have been treated in this work: aggregation-

participation, exhibition-characterization, generalization-specialization, classification-

instantiation and tagged relations. These relations are fully handled when their source

and destination is a thing (object or process). Structural relations whose source or

destination is a state have not been treated since they add a large number of special

cases that must be treated specifically. Most of these relations can be abstracted to

start at the containing object and at this stage the abstraction algorithm may be

applied.

There is no validation of structural loops. There are cases where loops are valid and

there are others where loops are invalid. The current work allows any type of loop to

exist in the diagram.

6.2 Procedural Relations

The basic procedural links have been treated in this work, including consumption,

effect, result, agent, instrument and invocation links. These links are abstracted by

adding them to the aggregating or exhibiting thing and using temporary links to find

the final abstracted links between two things.

Event, conditions and exception links are not treated at all. Event and condition links

can be abstracted to instrument (instrument event link and condition link) or

consumption (consumption event link) links with minimal reduction of the semantics

of the OPD. Exception links are a separate category that must be treated specifically

in a possible extension of this research.

6.3 States

States have been treated in this work largely as semantic parts of object that can be

easily abstracted and removed. The use in OPM of states as values was not treated.

87

6.4 Abstraction: In-Zooming and Unfolding

In-zooming and unfolding are not treated in this work. Theoretically (as stated above)

a system can be specified in a single flat and complex OPD, as the use of abstraction

is only for human understandability purposes. Nonetheless, since the abstraction

facilities OPM are one of the things that make it such a strong modeling language, an

additional discussion in section 7 is dedicated to these facilities and how the

verification can be done on them.

88

7. From a single OPD to a Complete OPM System

Validation

We have shown how to validate an OPD in its creation phase and when it is finished

(or at any time the modeler deems necessary). One of the most important traits of

OPM is its ability to abstract and refine information with its out-zooming and in-

zooming and with its folding and unfolding operations. In this section we refer to this

capability noting two things:

1) The in-zooming and unfolding operations create new OPDs where the OPD

creation rules apply. The important step here is to "save" the links that exist

between things in the parent OPD (The OPD where the thing is in-zoomed or

unfolded – note that there may be many of these) and the child OPD.

2) A System Model that consists of many OPDs can be validated by validating each

OPD recursively.

This will be further expanded below. However note that this is a preliminary work and

not a full investigation of the problem, therefore the algorithms and definitions may

not be completely formal or may contain limitations that are not existent in OPM.

7.1 Preliminary Definitions

7.1.1 In-Zooming and Unfolding

The in-zooming operation and the unfolding operation, when applied to a Thing in an

OPD, create a new OPD that is used by the modeler to show more information about

the thing that is in-zoomed or unfolded. This information is not shown in the OPD

where the in-zooming/unfolding was applied because it would probably create a lot of

clutter; therefore a new OPD is created to show this information.

There is a direct connection between the in-zoomed/unfolded entity in all the OPDs

where it is seen as out-zoomed/folded and the in-zoomed/unfolded OPD where this

thing is the central one. In OPM, an in-zoomed/unfolded thing is denoted by a bold

border on its symbol (in OPCAT [6]this operation also adds color to the in-

zoomed/unfolded thing in some cases).

89

An unfolding-refined OPD is a simple OPD where the unfolded thing occurs at the

top of the OPD. Furthermore, the thing that is unfolded may not be removed from the

OPD.

An in-zoom-refined OPD contains the in-zoomed thing which is enlarged at the center

of the in-zoom-refined OPD. This allows for the addition of things inside the in-

zoomed thing, as shown in Figure 57.

Figure 57. In-Zoom Refinement

In Figure 57 there are two examples of in-zooming. On the left hand side, process A is

in-zoomed, and is shown to contain process B and object C. On the right hand side,

object A is in-zoomed, and it contains object B and process C.

The things that are inside an in-zoomed thing are related to it in the following manner.

1) In-zoomed Process:

a) Aggregates the processes that are inside it, and

b) Exhibits the objects that are inside it.

2) In-zoomed Objects:

a) Aggregates the objects that are inside it, and

b) Exhibits the processes that are inside it.

These relations are presented graphically in Figure 58.

≡

≡

Figure 58. In-Zoom Refinement Unfolding Transformation

90

The links that connect an entity inside an in-zoomed thing are the same links that

connect it outside it. The in-zooming of a thing is used for clarity, and does not

change the meaning of the constructs in OPM. However, in an in-zoomed process the

timeline is from top to bottom and this is used for modeling synchronicity among

processes. Unfolding of process to subprocesses models asynchronous systems.

7.1.2 Procedural Link Abstraction between a Pair of Things

The procedural link that connects two things in an in-zoom-refined OPD may be

different from the link that connects the two things in the out-zoomed OPD. This can

occur when the in-zoomed OPD shows only part of the functionality of the out-

zoomed OPD. For the links to be valid between the two related OPDs, the link that

exists in the out-zoomed OPD must abstract the link in the in-zoomed OPD. The

abstraction order of procedural links is shown in Figure 59. Because the consumption

and result link have the same symbol in OPM, the link that goes from left to right is

the consumption link and the link that goes from right to left is the result link (to

remember this, suppose always that an object occurs at the left side of the link and a

process occurs at the right side of the link).

In-zoomed diagram

Out-zoomed diagram

 V V V V V

 X V X X X

 V V V X X

 V V X V X

 X V V V V

Figure 59. The link precedence matrix

The table in Figure 59 is used as follows:

1. Find the link in the in-zoomed diagram in the first (topmost) row of the table.

2. Find the link in the out-zoomed diagram in the first (leftmost) column of the table.

3. If the intersection of the selected column and the selected row contains a V, the

link in the out-zoomed diagram abstracts the link in the in-zoomed diagram.

4. If the intersection of the selected column and the selected row contains an X, the

link in the out-zoomed diagram does not abstract the link in the in-zoomed

diagram

91

7.1.3 Matching Thing between Parent and Child OPD

After an OPD has been abstracted to its final abstraction, if it is not the topmost OPD

of the system it must be out-zoomed/folded into the OPD from which it was created.

This works only for in-zoomed diagrams because in them the parent diagram can be

found using the OPD hierarchy, which cannot be done in unfolded diagrams since

they always occur in the topmost level of the OPM hierarchy.

To match two OPD it is assumed that there is only one thing of the same kind

(object/process) and the same name in the OPDs. In other words, if the parent OPM

contains an object named Card and the child OPD contains an object named Card,

they both refer to the same object. This requirement must also be met for processes.

It is assumed that all the things in the in-zoomed OPD have no structural relations

because it is in its minimal abstraction state. If this is not the case this can be easily

fixed by moving the relation to the unfolded OPD.

The match is done as follows. Let SDa be a diagram and SDa.b the in-zoomed

diagram of a thing that exists in SDa. Note that SDa.b must be in the minimal

abstraction as defined in section 5.5:

1. Verify that all things in SDa.b of the same kind have different names. If there are

two things of the same kind with the same name, stop and return error on thing.

2. For each thing in SDa.b

2.1. Find a thing in SDa that is of the same kind and has the same name. If

there is no such thing, stop and return error on thing.

2.2. Mark the matched thing in SDa to the matched thing in SDa.b.

3. For each procedural link that connects between two things in SDa.b

3.1. If there is no procedural link between the two things in SDa, add the

procedural link that exists in SDa.b.

3.2. If there is a procedural link between the two things in SDa, verify that this

link is the same or an abstraction of the link that exists in SDa.b.

7.2 Full System Model Validation

The validation of a full system model can be done in a number of ways:

1) Validate each OPD using the validation algorithm shown in section 5.5

recursively, by validating first the OPDs of higher level and from there going

down to the OPDs of lower level.

92

2) Create one OPD that contains a union of all of the OPDs that exist in the system

model. This can be done recursively starting from SD, the highest level OPDs and

including them in the OPDs from which SD is in-zoomed or unfolded.

Option 1 is simpler and more straightforward, therefore this is the option that will be

implemented. The algorithm to do this is as follows:

1. While there are OPDs in the OPD hierarchy other than SD

1.1. Select the OPD with the highest level. If there is more than one, select one

arbitrarily.

1.2. Transform the in-zoomed OPD as described in section 7.1.1.

1.3. Apply the OPD abstraction algorithm defined in section 5.5.

1.4. Match the links in the in-zoomed OPD to the links in the un-zoomed OPD

as described in section 7.1.3.

1.5. If all of the previous steps completed successfully, delete the in-zoomed

OPD.

93

8. Conclusions

In this research we developed a formal definition of the syntax of an OPD and a

method for the creation and verification of OPDs. This formalization provides OPM

with a solid foundation in the software engineering field, as the syntactic and some of

the semantic correctness of models and diagrams can be verified. This formal

verification is critical as we wish to create robust and verifiable systems.

A formal and exact definition of the syntax and the semantics of OPM opens the way

to a large number of possibilities. These include validation and automatic testing of

systems at design time. These two items can be of great help to systems and software

engineering where nowadays testing occurs mostly at the end of the software coding

or during production and errors in these stages are very costly and difficult to correct.

Another possibility that becomes open is system lifecycle management. As a system is

changed, these changes can be done in the system model and can be compared

semantically to the original model to detect what are the parts of the model affected

by the change. This can greatly reduce the amount of testing needed when new

versions of a system are produced. Another use can occur when a part of a system

needs to be changed for some reason (i.e., a part that was memory expensive in the

system must be changed). The semantic verification of the model can check whether

the changed part of the model still produces the same functionality that the original

part. This verification in conjunction with automatic model testing can give a high

degree of confidence that the changes made in the system will not affect its

functionality.

One more use that comes to mind is automatic optimization of system models. Having

a formal definition of the syntax and semantics of OPM enable the creation of

automatic programs that can read system diagrams and optimize them for memory use

or speed, to name a few. Many system models are redundant and have many recurring

parts that exist in the system because the system engineers are human beings, and no

matter how intelligent they are, as the system gets larger they cannot have it all in

their minds at one time and therefore duplication of existing functionality may occur.

Since clarity and simplicity are one of the main goals of system design, at times this

comes at the expense of performance. Therefore an optimization phase after system

modeling can be very effective.

94

9. References

[1] Balbo, G.; Desel, J.; Jensen, K.; Resig, W.; Rozenberg, G. & Silva, M. (2000),

Petri Nets 2000: Introductory Tutorial, in '21st International Conference on

Application and Theory of Petri Nets'.

[2] Breu, R.; Hinkel, U.; Hofmann, C.; Klein, C.; Paech, B.; Rumpe, B. & Thurner, V.

(1997), Towards a Formalization of the Unified Modeling Language, in

'ECOOP', pp. 344-366.

[3] Bruel, J. & France, R. B. (1998), Transforming UML models to Formal

Specifications, in Pierre-Alain Muller & Jean Bézivin, ed.,'Proc. International

Conference on the Unified Modelling Language (UML): Beyond the Notation',

Springer-Verlag.

[4] Corradini, A.; Ehrig, H.; Heckel, R.; Korff, M.; Lowe, M.; Ribeiro, L. & Wagner,

A. (1997), Algebraic Approaches to Graph Transformation - Part I: Single

Pushout Approach and Comparison with Double Pushout Approach, in G.

Rozenberg, ed.,'Handbook of Graph Grammars and Computing by Graph

Transformation. Vol. I: Foundations', World Scientific, pp. 247-312.

[5] Dijkstra, E. W. (1972), Chapter I: Notes on structured programming, Academic

Press Ltd., London, UK, pp. 1-82.

[6] Dori, D. (1996), 'Object-process analysis of computer integrated manufacturing

documentation and inspection functions', International Journal of Computer

Integrated Manufacturing 9(5), 339-353.

[7] Dori, D. & Crawley, E. F. (1999), Object-Process Methodology: A Holistic

Systems Paradigm, Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[8] Dori, D. & Sturm, A. (1998), OPCAT - Object-Process Case Tool: an Integrated

System Engineering Environment (ISEE), in 'ECOOP Workshops', pp. 555-556.

[9] Ehrig, H.; Ehrig, K.; Habel, A. & Pennemann, K. (2004), Constraints and

Application Conditions: From Graphs to High-Level Structures, in 'ICGT 2004',

pp. 287-303.

[10] Ehrig, H.; Heckel, R.; Korff, M.; Lцwe, M.; Ribeiro, L.; Wagner, A. &

Corradini, A. (1997), Algebraic approaches to graph transformation. Part II:

single pushout approach and comparison with double pushout approach, in

'Handbook of Graph Grammars and Computing by Graph Transformation. Vol.

95

I: Foundations', World Scientific, pp. 247-312 .

[11] Engels, G.; Heckel, R. & Sauer, S. (2000), UML - A Universal Modeling

Language?, in 'ICATPN 2000', pp. 24-38.

[12] Evans, A.; France, R. B.; Lano, K. & Rumpe, B. (1999), The UML as a Formal

Modeling Notation, in 'UML '98: Selected papers from the First International

Workshop on The Unified Modeling Language UML', Springer-Verlag, London,

UK, pp. 336-348.

[13] France, R. B.; Ghosh, S.; Dinh-Trong, T. & Solberg, A. (2006), 'Model-Driven

Development Using UML 2.0: Promises and Pitfalls', Computer 39(2), 59.

[14] Gogolla, M. & Parisi-Presicce, F. (1998), State Diagrams in UML: A Formal

Semantics using Graph Transformations, in Manfred Broy; Derek Coleman;

Tom S. E. Maibaum & Bernhard Rumpe, ed.,'Proceedings PSMT'98 Workshop

on Precise Semantics for Modeling Techniques', Technische Universitat

München, TUM-I9803, .

[15] Gogolla, M.; Ziemann, P. & Kuske, S. (2003), 'Towards an Integrated Graph

Based Semantics for UML', Electronic Notes in Theorethical Computer Science

72(3).

[16] Habel, A.; Heckel, R. & Taentzer, G. (1996), 'Graph grammars with negative

application conditions', Fundam. Inf. 26(3-4), 287-313.

[17] Harel, D. (1987), 'Statecharts: A Visual Formulation for Complex Systems',

Science Computerts Programming 8(3), 231-274.

[18] Harel, D. & Kugler, H. (2004), The RHAPSODY Semantics of Statecharts (or,

On the Executable Core of the UML), in 'Integration of Software Specification

Techniques for Application in Engineering', Springer-Verlag, pp. 325-354.

[19] Heckel, R. (1995), Embedding of conditional graph transformations', in Valiente

Feruglio G. & Rosello Lompart F., ed., 'Proceedings Colloquium on Graph

Transformation and its Application in Computer Science', Technical Report B-

19, Universitat de les Illes Balears.

[20] Jürjens, J. (2002), A UML statecharts semantics with message-passing, in 'SAC',

pp. 1009-1013.

[21] Kastenberg, H.; Kleppe, A. & Rensink, A. (2006), 'Engineering Object-Oriented

Semantics using Graph Transformations'(TR-CTIT-06-12), Technical report,

Department of Computer Science, University of Twente.

[22] Kobryn, C. (2004), 'UML 3.0 and the future of modeling', Software and Systems

96

Modeling 3(1), 4-8.

[23] Kong, J.; Zhang, K.; Dong, J. & Song, G. (2003), A Graph Grammar Approach

to Software Architecture Verification and Transformation, in 'COMPSAC '03:

Proceedings of the 27th Annual International Conference on Computer Software

and Applications', IEEE Computer Society, Washington, DC, USA, pp. 492.

[24] Kuske, S. (2001), A Formal Semantics of UML State Machines Based on

Structured Graph Transformation, in 'Proceedings of the 4th International

Conference on The Unified Modeling Language, Modeling Languages,

Concepts, and Tools', Springer-Verlag, London, UK, pp. 241-256.

[25] Kuske, S.; Gogolla, M.; Kollmann, R. & Kreowski, H. (2002), An Integrated

Semantics for UML Class, Object and State Diagrams Based on Graph

Transformation, in 'IFM '02: Proceedings of the Third International Conference

on Integrated Formal Methods', Springer-Verlag, London, UK, pp. 11-28.

[26] Mayer, R. E. (2001), Multimedia Learning, Cambridge University Press, New

York, NY, USA.

[27] Miller, J. & Mukerji, J. (2003), 'MDA Guide Version 1.0.1', Technical report,

Object Management Group (OMG).

[28] Mwaluseke, G. W. & Bowen, J. P. (2001), 'UML Formalisation Literature

Survey'.

[29] Nestor, A. O., 'Modeling of large and complex applications with UML'.

[30] Object Management Group (2007), 'SysML Specification', at

http://www.sysml.org/.

[31] Object Management Group (2003), 'Unified Modeling Language (UML) 2.0

Infrastructure Specification', at http://www.uml.org/.

[32] Object Management Group (2003), 'Unified Modeling Language (UML) 2.0

Superstructure Specification', at http://www.uml.org/.

[33] Peleg, M. & Dori, D. (2000), 'The Model Multiplicity Problem: Experimenting

with Real-Time Specification Methods', IEEE Trans. Softw. Eng. 26(8), 742-

759.

[34] Peleg, M. & Dori, D. (1999), 'Extending the Object-Process Methodology to

Handle Real-Time Systems', Journal of Object-Oriented Programming 11(8),

53-58.

[35] Reinhartz-Berger, I. & Dori, D. (2005), A Reflective Metamodel of Object-

Process Methodology: The System Modeling Building Blocks, in Peter Green &

97

Michael Rosemann, ed.,'Business Systems Analysis with Ontologies', Idea

Group.

[36] Reinhartz-Berger, I.; Dori, D. & Katz, S. (2002), 'OPM/Web – Object-Process

Methodology for Developing Web Applications', Ann. Softw. Eng. 13(1-4), 141-

161.

[37] Schmidt, D. C. (2006), 'Guest Editor's Introduction: Model-Driven Engineering',

IEEE Computer 39(2), 25-31.

[38] Schürr, A.; Winter, A. & Zündorf, A. (1995), Graph Grammar Engineering with

PROGRESS, in 'Software Engineering – ESEC '95', Springer Berlin /

Heidelberg, pp. 219-234

[39] Snook, C. & Butler, M. (2006), 'UML-B: Formal modeling and design aided by

UML', ACM Trans. Softw. Eng. Methodol. 15(1), 92-122.

[40] Soffer, P.; Golany, B. & Dori, D. (2003), 'ERP modeling: a comprehensive

approach', Inf. Syst. 28(6), 673-690.

[41] Soffer, P.; Golany, B.; Dori, D. & Wand, Y. (2001), 'Modelling Off-the-Shelf

Information Systems Requirements: An Ontological Approach', Requir. Eng.

6(3), 183-199.

[42] Spivey, J. M. (1989), The Z notation: A Reference Manual, Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA.

[43] Stцrrle, H. & Hausmann, J. H. (2005), Towards a Formal Semantics of UML 2.0

Activities, in 'Software Engineering', pp. 117-128.

[44] Tchertchago, A. (2002), 'Formal Semantics for a UML Fragment Using

UML/OCL Metamodeling'.

[45] Thomas, D. (2004), 'MDA: Revenge of the Modelers or UML Utopia?', IEEE

Software 21(3), 15-17.

[46] Vanderperren, Y. & Dehaene, W. (2005), UML 2 and SysML: An Approach to

Deal with Complexity in SoC/NoC Design, in 'DATE', pp. 716-717.

[47] Wand, Y. & Weber, R. (1993), 'On the Ontological Expressiveness of

Information Systems Analysis and Design Grammars', Journal of Information

Systems, 217-237.

[48] 'Wikipedia - The Free Encyclopedia', at http://wikipedia.org/.

[49] Ziemann, P.; Hulscher, K. & Gogolla, M. (2005), 'From UML Models to Graph

Transformation Systems', Electronic Notes in Theorethical Computer Science

127(4), 17-33.

