
© ISO 2014 – All rights reserved

Document type: Publicly Available Specification
Document subtype:
Document stage: (20) Preparatory
Document language: E
 STD Version 2.1c2

ISO TC 184/SC 5 N 522
Date: 2014-04-29

ISO/PDPAS 19450

ISO TC 184/SC 5/WG 1 N 522

Secretariat: ANSI

Automation systems and integration — Object-Process Methodology

Systèmes d'automatisation et intégration -- Méthodologie du processus-objet

ISO/PDPAS 19450

ii © ISO 2014 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards
development process is permitted without prior permission from ISO, neither this document nor any extract
from it may be reproduced, stored or transmitted in any form for any other purpose without prior written
permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as
shown below or to ISO's member body in the country of the requester:

[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as
appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the TC or
SC within the framework of which the working document has been prepared.]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

Violators may be prosecuted.

ISO/PDPAS 19450

© ISO 2014 – All rights reserved iii

Contents Page

Foreword .. ix

Introduction ... x

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions ... 1

4 Symbols .. 8

5 Conformance ... 10

6 Object-Process Methodology principles and concepts .. 10
6.1 OPM modelling principles .. 10
6.1.1 Modelling as a purpose-serving activity ... 10
6.1.2 Unification of function, structure, and behaviour .. 11
6.1.3 Identify functional value ... 11
6.1.4 Function versus behaviour... 11
6.1.5 System boundary setting.. 12
6.1.6 Clarity and completeness trade-off ... 12
6.2 OPM Fundamental concepts .. 12
6.2.1 Bimodal representation .. 12
6.2.2 OPM modelling elements .. 12
6.2.3 OPM things: objects and processes ... 13
6.2.4 OPM links: procedural and structural ... 13
6.2.5 OPM context management ... 14
6.2.6 OPM model implementation (informative) .. 14
6.2.6.1 Conceptual models versus runtime models ... 14
6.2.6.2 OPM model realization .. 14
6.2.6.3 OPD Navigation and OPL composition ... 15

7 OPM thing syntax and semantics .. 15
7.1 Objects.. 15
7.1.1 Description ... 15
7.1.2 Representation .. 15
7.2 Processes ... 15
7.2.1 Description ... 15
7.2.2 Representation .. 16
7.3 OPM things ... 16
7.3.1 OPM thing defined ... 16
7.3.2 Object-process test ... 16
7.3.3 OPM thing generic properties .. 16
7.3.4 Default values of thing generic properties ... 17
7.3.5 Object states .. 18
7.3.5.1 Stateful and stateless objects .. 18
7.3.5.2 Object state representation .. 18
7.3.5.3 Initial, default, and final states ... 18
7.3.5.4 Initial, default, and final state representation ... 19
7.3.5.5 Attribute values .. 19

8 OPM link syntax and semantics overview .. 19
8.1 Procedural link overview .. 19
8.1.1 Kinds of procedural links ... 19
8.1.2 Procedural link uniqueness OPM principle .. 20
8.1.3 State-specified procedural links .. 20
8.2 Operational semantics and flow of execution control ... 20

ISO/PDPAS 19450

iv © ISO 2014 – All rights reserved

8.2.1 The Event-Condition-Action control mechanism .. 20
8.2.2 Preprocess object set and postprocess object set... 20
8.2.3 Skip semantics of condition vs. wait semantics of non-condition links 21

9 Procedural links .. 21
9.1 Transforming links.. 21
9.1.1 Kinds of transforming links ... 21
9.1.2 Consumption link.. 22
9.1.3 Result link .. 22
9.1.4 Effect link ... 23
9.1.5 Basic transforming links summary ... 23
9.2 Enabling links .. 23
9.2.1 Kinds of enabling links .. 23
9.2.2 Agent and Agent Link ... 23
9.2.3 Instrument and Instrument Link .. 24
9.2.4 Basic enabling links summary .. 25
9.3 State-specified transforming links .. 25
9.3.1 State-specified consumption link ... 25
9.3.2 State-specified result link .. 26
9.3.3 State-specified effect links .. 27
9.3.3.1 Input and output effect links .. 27
9.3.3.2 Input-output-specified effect link .. 27
9.3.3.3 Input-specified effect link ... 28
9.3.3.4 Output-specified effect link .. 28
9.3.4 State-specified transforming links summary ... 30
9.4 State-specified enabling links ... 31
9.4.1 State-specified agent link .. 31
9.4.2 State-specified instrument link ... 31
9.4.3 State-specified enabling links summary .. 32
9.5 Control links .. 32
9.5.1 Kinds of control links ... 32
9.5.2 Event links ... 33
9.5.2.1 Transforming event links ... 33
9.5.2.1.1 Consumption event link ... 33
9.5.2.1.2 Effect event link ... 34
9.5.2.1.3 Transforming event links summary .. 34
9.5.2.2 Enabling event links ... 34
9.5.2.2.1 Agent event link... 34
9.5.2.2.2 Instrument event link .. 34
9.5.2.2.3 Enabling event link summary .. 35
9.5.2.3 State-specified transforming event links .. 35
9.5.2.3.1 State-specified consumption event link ... 35
9.5.2.3.2 Input-output-specified effect event link .. 35
9.5.2.3.3 Input-specified effect event link .. 36
9.5.2.3.4 Output-specified effect event link ... 36
9.5.2.3.5 State-specified transforming event link summary ... 37
9.5.2.4 State-specified enabling event links ... 37
9.5.2.4.1 State-specified agent event link .. 37
9.5.2.4.2 State-specified instrument event link ... 38
9.5.2.4.3 State-specified enabling event link summary .. 38
9.5.2.5 Invocation links ... 39
9.5.2.5.1 Process invocation and invocation link ... 39
9.5.2.5.2 Self-invocation link ... 39
9.5.2.5.3 Invocation link summary .. 39
9.5.3 Condition links .. 40
9.5.3.1 Basic Condition transforming links .. 40
9.5.3.1.1 Condition consumption link ... 40
9.5.3.1.2 Condition effect link .. 40
9.5.3.1.3 Condition transforming link summary .. 41
9.5.3.2 Basic condition enabling links .. 41

ISO/PDPAS 19450

© ISO 2014 – All rights reserved v

9.5.3.2.1 Condition agent link .. 41
9.5.3.2.2 Condition instrument link ... 41
9.5.3.2.3 Basic condition enabling link summary .. 43
9.5.3.3 Condition state-specified transforming links ... 43
9.5.3.3.1 Condition state-specified consumption link ... 43
9.5.3.3.2 Condition input-output-specified effect link ... 44
9.5.3.3.3 Condition input-specified effect link .. 44
9.5.3.3.4 Condition output-specified effect link ... 44
9.5.3.3.5 Condition state-specified transforming link summary .. 46
9.5.3.4 Condition state-specified enabling links ... 47
9.5.3.4.1 Condition state-specified agent link .. 47
9.5.3.4.2 Condition state-specified instrument link ... 47
9.5.3.4.3 Condition state-specified enabling link summary .. 48
9.5.4 Exception links .. 48
9.5.4.1 Minimal, Expected, and Maximal Process Duration and Duration Distribution 48
9.5.4.2 Overtime exception link .. 49
9.5.4.3 Undertime exception link .. 49

10 Structural links .. 49
10.1 Kinds of structural links ... 49
10.2 Tagged structural link ... 49
10.2.1 Unidirectional tagged structural link ... 49
10.2.2 Unidirectional null-tagged structural link ... 50
10.2.3 Bidirectional tagged structural link ... 50
10.2.4 Reciprocal tagged structural link .. 50
10.3 Fundamental structural relations .. 51
10.3.1 Kinds of fundamental structural relations .. 51
10.3.2 Aggregation-participation relation link ... 52
10.3.3 Exhibition-characterization link ... 53
10.3.3.1 Exhibition-characterization relation link expression ... 53
10.3.3.2 Attribute state and exhibitor features .. 56
10.3.3.2.1 Attribute state as value ... 56
10.3.3.2.2 Expressing exhibitor-feature relation .. 56
10.3.4 Generalization-specialization and Inheritance ... 56
10.3.4.1 Generalization-specialization relation link .. 56
10.3.4.2 Inheritance through specialization .. 57
10.3.4.3 Specialization restriction through discriminating attribute .. 58
10.3.5 Classification-instantiation link ... 59
10.3.5.1 Classification-instantiation relation link .. 59
10.3.5.2 Instances of object class and process class .. 60
10.3.6 Fundamental structural relation link and tagged structural link summary 61
10.4 State-specified structural relations and links... 62
10.4.1 State-specified characterization relation link ... 62
10.4.2 State-specified tagged structural relations .. 63
10.4.2.1 State-specified tagged structural links .. 63
10.4.2.2 Unidirectional source state-specified tagged structural link .. 63
10.4.2.3 Unidirectional destination state-specified tagged structural link... 63
10.4.2.4 Unidirectional source-and-destination state-specified tagged structural link 63
10.4.2.5 Bidirectional source-or-destination state-specified tagged structural link 64
10.4.2.6 Bidirectional source-and-destination state-specified tagged structural link 64
10.4.2.7 Reciprocal source-or-destination state-specified tagged structural link 64
10.4.2.8 Reciprocal source-and-destination state-specified tagged structural link 64
10.4.2.9 State-specified tagged structural link summary .. 65

11 Relationship cardinalities ... 67
11.1 Object multiplicity in structural and procedural links ... 67
11.2 Object multiplicity expressions and constraints ... 68
11.3 Attribute value and multiplicity constraints ... 70

12 Logical operators: AND, XOR, and OR .. 71
12.1 Logical AND procedural links .. 71

ISO/PDPAS 19450

vi © ISO 2014 – All rights reserved

12.2 Logical XOR and OR procedural links .. 72
12.3 Diverging and converging XOR and OR links ... 73
12.4 State-specified XOR and OR link fans .. 75
12.5 Control-modified link fans ... 76
12.6 State-specified control-modified link fans ... 76
12.7 Link probabilities and probabilistic link fans .. 78

13 Execution path and path labels ... 80

14 Context management with Object-Process Methodology .. 81
14.1 Completing the system diagram ... 81
14.2 Achieving model comprehension ... 82
14.2.1 OPM refinement-abstraction mechanisms ... 82
14.2.1.1 State expression and state suppression .. 82
14.2.1.2 Unfolding and folding ... 83
14.2.1.3 In-zooming and out-zooming ... 84
14.2.2 Control (operational) semantics within an in-zoomed process context 86
14.2.2.1 Implicit invocation link ... 86
14.2.2.2 Implicit parallel invocation link set.. 87
14.2.2.3 Implicit invocation link summary .. 88
14.2.2.4 Link distribution across context .. 88
14.2.2.4.1 Semantics of link distribution .. 88
14.2.2.4.2 Event link constraint ... 90
14.2.2.4.3 Split state-specified transforming links .. 90
14.2.2.4.4 Operational instances of involved object set ... 92
14.2.2.5 Synchronous vs. asynchronous process refinement ... 92
14.2.2.6 Expressing the contextual texture of a system ... 93
14.2.2.6.1 Navigating the contexts of a system ... 93
14.2.2.6.1.1 The OPD process tree ... 93
14.2.2.6.1.2 The OPD object tree .. 93
14.2.2.6.1.3 OPM diagram labels .. 94
14.2.2.6.1.4 OPD process tree edge label .. 94
14.2.2.6.1.5 System map and model views .. 94
14.2.2.6.2 Whole System OPL specification .. 94
14.2.3 OPM fact consistency principle .. 95
14.2.4 Abstraction ambiguity resolution for procedural links .. 96
14.2.4.1 Abstraction and procedural link precedence ... 96
14.2.4.1.1 Precedence among transforming links ... 96
14.2.4.1.2 Precedence among transforming and enabling links ... 97
14.2.4.1.3 Secondary precedence among same-kind non-control links and control links 97
14.2.4.1.4 Summary of the procedural links semantic strength .. 98

Annex A (normative) OPL Formal syntax in EBNF ... 99
A.1 Introduction ... 99
A.2 OPL in the context of OPD ... 99
A.3 Preliminaries ... 99
A.3.1 EBNF syntax .. 99
A.3.2 Base declarations ... 100
A.3.3 OPL special sequences .. 101
A.4 OPL Syntax .. 101
A.4.1 OPL document structure .. 101
A.4.2 OPL Identifiers .. 101
A.4.3 OPL lists .. 102
A.4.4 OPL Thing description ... 102
A.4.4.1 Thing description sentence ... 102
A.4.4.2 Generic property sentence ... 103
A.4.4.3 Type description sentence ... 103
A.4.4.4 State description sentence .. 103
A.4.5 OPL Procedural sentences .. 103
A.4.5.1 Procedural sentnece ... 103
A.4.5.2 OPL Transformations ... 104

ISO/PDPAS 19450

© ISO 2014 – All rights reserved vii

A.4.5.2.1 Transforming sentence ... 104
A.4.5.2.2 Consumption sentence ... 104
A.4.5.2.3 Result sentence ... 104
A.4.5.2.4 Effect sentence .. 104
A.4.5.2.5 Change sentence ... 105
A.4.5.3 OPL Enablers ... 106
A.4.5.3.1 Enabling sentences ... 106
A.4.5.3.2 Agent sentence .. 106
A.4.5.3.3 Instrument sentence .. 106
A.4.5.4 OPL Flow of control ... 107
A.4.5.4.1 Control sentence .. 107
A.4.5.4.2 Event sentence ... 107
A.4.5.4.3 Condition sentence .. 107
A.4.5.4.4 Invocation sentence .. 108
A.4.5.4.5 Exception sentence ... 108
A.4.6 OPL Structural sentences... 109
A.4.6.1 Structural sentence ... 109
A.4.6.2 OPL tagged structures .. 109
A.4.6.2.1 Tagged structural sentence .. 109
A.4.6.2.2 Unidirectional tagged structural sentence .. 109
A.4.6.2.3 Bidirectional tagged structural sentences .. 110
A.4.6.3 OPL fundamental structures .. 110
A.4.6.3.1 Aggregation sentences ... 110
A.4.6.3.2 Characterization sentences .. 111
A.4.6.4 Exhibition sentences ... 111
A.4.6.5 Specialization sentences .. 111
A.4.6.6 Instantiation sentences ... 113
A.4.7 OPL Context management.. 113
A.4.7.1 Context management sentence .. 113
A.4.7.2 Unfolding sentences .. 113
A.4.7.3 Folding sentences ... 114
A.4.7.4 In zooming sentence ... 114
A.4.7.5 Out zooming sentence .. 115

Annex B (informative) Guidance for Object-Process Methodology .. 116
B.1 Introduction .. 116
B.2 Thing importance OPM principle ... 116
B.3 What a new OPD should contain ... 116
B.4 The element representation OPM principle .. 117
B.5 The multiple thing copies convention ... 117
B.6 Naming guidelines ... 117
B.6.1 Importance of name selection .. 117
B.6.2 Object naming .. 117
B.6.3 Process naming ... 118
B.6.4 State naming .. 118
B.6.5 Capitalization convention ... 119

Annex C (informative) Modelling OPM using OPM .. 120
C.1 OPM models of OPM ... 120
C.2 OPM model structure .. 121
C.3 OPD Construct model ... 123
C.4 OPM Element models .. 125
C.5 In-zooming and out-zooming models .. 140
C.5.1 The in-zooming and out-zooming mechanisms ... 140
C.5.2 Simplifying an OPD ... 141
C.6 OPM Process Performance Controlling model .. 143
C.6.1 OPM Process Performance Controlling System - SD .. 143
C.6.2 Process Performance Controlling in-zoomed as SD1 ... 144
C.6.3 Process Initiating in-zoomed as SD1.1 ... 145
C.6.4 Precondition Evaluating in-zoomed as SD1.1.1 ... 146
C.6.5 Transformee Set Checking in-zoomed as SD1.1.1.1 .. 147

ISO/PDPAS 19450

viii © ISO 2014 – All rights reserved

C.6.6 Process Performing in-zoomed as SD1.2 .. 148
C.6.7 Initial Process Performing in-zoomed as SD1.2.1 ... 149
C.6.8 Main Process Performing in-zoomed as SD1.2.2 .. 150
C.6.9 Final Process Performing in-zoomed as SD1.2.3 .. 151

Annex D (informative) OPM dynamics and simulation .. 152
D.1 OPM executability ... 152
D.2 Change and effect ... 152
D.3 Existence and transformation ... 152
D.4 Timeline OPM principle .. 152
D.5 Timed events ... 153
D.6 Object history and the lifespan diagram .. 153
D.7 Process duration... 155

Bibliography ... 170

ISO/PDPAS 19450

© ISO 2014 – All rights reserved ix

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, a
technical committee may decide to publish other types of normative document:

— an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in
an ISO working group and is accepted for publication if it is approved by more than 50 % of the members
of the parent committee casting a vote;

— an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical
committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting
a vote.

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a
further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is
confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an
International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/PAS 19450 was prepared by Technical Committee ISO/TC 184, Automation systems and integration,
Subcommittee SC 5, Interoperbility, integration, and architectures for enterprise systems and automation
applications.

This second/third/... edition cancels and replaces the first/second/... edition (), [clause(s) / subclause(s) /
table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.

ISO/PDPAS 19450

x © ISO 2014 – All rights reserved

Introduction

Object-Process Methodology (OPM) is a compact conceptual approach, language, and methodology for
modelling and knowledge representation of automation systems. The application of OPM ranges from simple
assemblies of elemental components to complex, multidisciplinary, dynamic systems. OPM is suitable for
implementation and support by tools using information and computer technology. This document specifies
both the language and methodology aspects of OPM in order to establish a common basis for system
architects, designers, and OPM-compliant tool developers to model all kinds of systems.

OPM provides two semantically equivalent modalities of representation for the same model: graphical and
textual. A set of hierarchically structured, interrelated Object-Process-Diagrams (OPDs) constitutes the
graphical model, and a set of automatically generated sentences in a subset of the English language
constitutes the textual model expressed in the Object-Process Language (OPL). In a graphical-visual model,
each OPD consists of OPM elements, depicted as graphic symbols, sometimes with label annotation. The
OPD syntax specifies the consistent and correct ways to manage the arrangement of those graphically
elements. Using OPL, OPM generates the corresponding textual model for each OPD in a manner that retains
the constraints of the graphical model. Since OPL's syntax and semantics are a subset of English natural
language, domain experts easily understand the textual model.

OPM notation supports the conceptual modelling of systems with formal syntax and semantics. This formality
serves as the basis for model-based systems engineering in general, including systems architecting,
engineering, development, life cycle support, communication, and evolution. Furthermore, the domain-
independent nature of OPM opens system modelling to the entire scientific, commercial and industrial
community for developing, investigating and analysing manufacturing and other industrial and business
systems inside their specific application domains; thereby enabling companies to merge and provide for
interoperability of different skills and competencies into a common intuitive yet formal framework.

OPM facilitates a common view of the system under construction, test, integration, and daily maintenance,
providing for working in a multidisciplinary environment. Moreover, using OPM, companies can improve their
overall, big-picture view of the system's functionality, flexibility in assignment of personnel to tasks, and
managing exceptions and error recovery. System specification is extensible for any necessary detail,
encompassing the functional, structural and behavioural aspects of a system.

One particular application of OPM is in the drafting and authoring of technical standards. OPM helps sketch
the implementation of a standard and identify weaknesses in the standard to reduce, thereby significantly
improving the quality of successive drafts. With OPM, even as the model-based text of a system expands to
include more details, the underlying model keeps maintaining its high degree of formality and consistency.

This Publicly Available Specification (PAS) provides a baseline for system architects and designers, who can
use it to model systems concisely and effectively. OPM tool vendors can utilise the PAS as a formal standard
specification for creating software tools to enhance conceptual modelling.

This Publically Available Specification provides a presentation of the normative text that follows the eBNF
specification of the language syntax. All elements are presented in Clause 6 through 13 with only minimal
reference to methodological aspects, Clause 14 presents the context management mechanisms related to in-
zooming and unfolding.

This specification utilizes several conventions for the presentation of OPM. Specifically, Arial bold font in text
and Arial bold italic font in figure captions, table captions and headings distinguish label names for OPM
objects, processes, states, and link tags. OPL reserved words are in Arial regular font with commas and
periods in Arial bold font. Most figures contain both a graphic image, the OPD portion, and a textual equivalent,
the OPL portion. Because this is a language specification, the precise use of term definitions is essential and
several terms in common use have particular meaning when using OPM. Annex B.6 explains other
conventions for the use of OPM.

Annex A presents the formal syntax for OPL, in EBNF form.

ISO/PDPAS 19450

© ISO 2014 – All rights reserved xi

Annex B presents conventions and patterns commonly used in OPM applications.

Annex C presents aspects of OPM as OPM models.

Annex D summarizes the dynamic and simulation capabilities of OPM.

Annex E presents a summary of the graph grammar of the OPD's.

The International Organization for Standardization (ISO) [and/or] International Electrotechnical Commission
(IEC) draws attention to the fact that it is claimed that compliance with this document may involve the use of a
patent concerning OPM as a "Modeling System" given in Clause 6 through 14.

ISO takes no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the ISO that he/she is willing to negotiate licences either free of
charge or under reasonable and non-discriminatory terms and conditions with applicants throughout the world.
In this respect, the statement of the holder of this patent right is registered with ISO . Information may be
obtained from:

Prof. Dov Dori
Technion Israel Institute of Technology
Technion City
Haifa 32000, Israel
dori@ie.technion.ac.il

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights other than those identified above. ISO shall not be held responsible for identifying any or all such patent
rights.

ISO (www.iso.org/patents) and IEC (http://patents.iec.ch) maintain on-line databases of patents relevant to
their standards. Users are encouraged to consult the databases for the most up to date information
concerning patents.

COMMITTEE DRAFT ISO/PDPAS 19450

© ISO 2014 – All rights reserved 1

Automation systems and integration — Object-Process 1

Methodology 2

1 Scope 3

This Publicly Available Specification (PAS) specifies Object-Process Methodology (OPM) with detail sufficient 4
for enabling practitioners to utilise the concepts, semantics, and syntax of OPM as a modelling paradigm and 5
language for producing conceptual models at various extents of detail, and for enabling tool vendors to 6
provide application modelling products to aid those practitioners. 7

While this PAS presents some examples for the use of OPM to improve clarity, this International Standard 8
does not attempt to provide a complete reference for all the possible applications of OPM. 9

2 Normative references 10

The following referenced documents are indispensable for the application of this document. For dated 11
references, only the edition cited applies. For undated references, the latest edition of the referenced 12
document (including any amendments) applies. 13

ISO/IEC 14977, Information technology — Syntactic metalanguage — Extended BNF 14

3 Terms and definitions 15

For the purposes of this document, the following terms and definitions apply: 16

NOTE 1 To facilitate look up, terms are in alphabetical sequence. 17

NOTE 2 Italicized words in the definitions are themselves terms defined in this clause. 18

3.1 19
abstraction, noun 20
outcome of an abstraction process 21

3.2 22
abstraction, verb 23
decreasing the extent of detail and system model completeness in order to achieve better comprehension 24

3.3 25
affectee 26
transformee that is affected by a process occurrence, i.e. its state changes 27
 28

NOTE An affectee can only be a stateful object. A stateless object can only be created or consumed, but not affected. 29

ISO/PDPAS 19450

2 © ISO 2014 – All rights reserved

3.4 30
agent 31
enabler that is a human or a group of humans 32

3.5 33
attribute 34
object that characterizes a thing other than itself 35

3.6 36
behaviour 37
transformation of objects resulting from the execution of an OPM model comprising a collection of processes 38
and links to objects in the model 39

3.7 40
beneficiary 41
<system> stakeholder who gains functional value from the system's operation 42

3.8 43
completeness 44
<system model> extent to which all the details of a system are specified in a model 45

3.9 46
condition link 47
procedural link from an object or object state to a process, denoting a procedural constraint 48

3.10 49
consumee 50
transformee that a process occurrence consumes or eliminates 51

3.11 52
context 53
<model> portion of an OPM model represented by an Object-Process Diagram and corresponding Object-54
Process Language text 55

3.12 56
control link 57
procedural link with additional control semantics 58

3.13 59
control modifier 60
symbol embellishing a link to add control semantics to it, making it a control link 61
 62

NOTE The control modifiers are the symbols 'e' for event and 'c' for condition 63

3.14 64
discriminating attribute 65
attribute whose different values identify corresponding specialization relations 66

3.15 67
effect 68
change in the state of an object or an attribute value 69
 70
NOTE An effect only applies to a stateful object. 71

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 3

3.16 72
element 73
thing or link 74

3.17 75
enabler 76
<process> object that enables a process but which the process does not transform 77

3.18 78
event 79
<OPM> point in time of creation (or appearance) of an object, or entrance of an object to a particular state, 80
either of which may initiate an evaluation of the process precondition 81

3.19 82
event link 83
control link denoting an event originating from an object or object state to a process 84

3.20 85
exhibitor 86
thing that exhibits (is characterized by) a feature by means of the exhibition-characterization relation 87

3.21 88
feature 89
attribute or operation 90

3.22 91
folding 92
mechanism of abstraction achieved by hiding the refineables of an unfolded refinee 93

 94
NOTE 1 The four kinds of folded refineables are parts (part folding), features (feature folding), specializations 95
(specialization folding), and instances (instance folding). 96
 97

NOTE 2 Folding is primarily applied to objects. When applied to a process, its subprocesses are unordered, which is 98
adequate for modelling asynchronous systems, in which processes' temporal order is undefined. 99
 100
NOTE 3 The opposite of folding is unfolding. 101

3.23 102
function 103
process that provides functional value to a beneficiary 104

3.24 105
general, noun 106
<OPM> refineable with specializations 107

3.25 108
informatical 109
of, or pertaining to informatics, e.g., data, information, knowledge 110

3.26 111
inheritance 112
assignment of OPM elements of a general to its specializations 113

3.27 114
input link 115
link from object source (input) state to the transforming process 116

3.28 117
instance 118

ISO/PDPAS 19450

4 © ISO 2014 – All rights reserved

<model> object instance or process instance that is a refinee in a classification-instantiation relation 119

3.29 120
instance 121
<operational> object instance or process instance that is an actual, uniquely identifiable thing that exists 122
during model operation, e.g., during simulation or runtime implementation 123

NOTE A process instance is identifiable by the operational instances of the involved object set during process 124
occurence and the process start and end time stamps of the occurrence. 125

3.30 126
instrument 127
non-human enabler 128

3.31 129
invocation 130
<process> initiating of a process by a process 131

3.32 132
involved object set 133
union of preprocess object set and postprocess object set 134

3.33 135
in-zoom context 136
things and links within the boundary of the thing being in-zoomed 137

3.34 138
in-zooming 139
<object> object part unfolding that indicates spatial ordering of the constituent objects 140

3.35 141
in-zooming 142
<process> process part unfolding that indicates temporal partial ordering of the constituent processes 143

3.36 144
link 145
graphical expression of a structural relation or a procedural relation between two OPM things. 146

3.37 147
metamodel 148
model of a modelling language or part of a modelling language 149

3.38 150
model fact 151
relation between two OPM things or states in the OPM model 152

3.39 153
object 154
<OPM> model element representing a thing that does or might exist physically or informatically 155

3.40 156
object class 157
pattern for objects that have the same structure and pattern of transformation 158

3.41 159
Object-Process Diagram 160
OPD 161
OPM graphic representation of an OPM model or part of a model, in which objects and processes in the 162
universe of interest appear together with the structural and procedural links among them 163

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 5

3.42 164
Object-Process Language 165
OPL 166
subset of English natural language that represents textually the OPM model that the OPD represents 167
graphically 168

3.43 169
Object-Process Methodology 170
OPM 171
formal language and method for specifying complex, multidisciplinary systems in a single function-structure-172
behaviour unifying model that uses a bimodal graphic-text representation of objects in the system and their 173
transformation or use by processes 174

3.44 175
OPD object tree 176
tree graph, whose root is an object, depicting elaboration of the object through refinement 177

3.45 178
OPD process tree 179
tree graph whose root is the System Diagram (SD) and each node is an OPD obtained by in-zooming of a 180
process in its ancestor OPD (or the SD) and each directed edge points from the in-zoomed process at the 181
parent OPD to the same process in the child OPD 182

 183
NOTE OPM model elaboration usually occurs by process decomposition through in-zooming, therefore the OPD 184
process tree is the primary way to navigate an OPM model. 185

3.46 186
operation 187
process that a thing performs, which characterizes the thing other than itself 188

3.47 189
output link 190
link from the transforming process to the output (destination) state of an object 191

3.48 192
out-zooming 193
<object> inverse of object in-zooming 194

3.49 195
out-zooming 196
<process> inverse of process in-zooming 197

3.50 198
perseverance 199
property of thing which can be static, defining an object, or dynamic, defining a process 200

3.51 201
postcondition 202
<process> condition that is the outcome of successful process completion 203

3.52 204
postprocess object set 205
collection of objects remaining or resulting from process completion 206
 207
NOTE The postprocess object set may include stateful objects, for which specific states result from process 208
performance. 209

3.53 210
precondition 211
<process> condition for starting a process 212

ISO/PDPAS 19450

6 © ISO 2014 – All rights reserved

3.54 213
preprocess object set 214
collection of objects to evaluate prior to starting a process 215
 216
NOTE The collection of the objects may include stateful objects for which specific states are necessary for process 217
performance. 218

3.55 219
primary essence 220
<system> essence of the majority of things in a system, which can be either informatical or physical 221

3.56 222
procedural link 223
graphical notation of procedural relation in OPM 224

3.57 225
procedural relation 226
connection or association between an object or object state and a process 227
 228

NOTE 1 Procedural relations specify how the system operates to attain its function, designating time-dependent or 229
conditional initiating of processes that transform objects. 230
 231

NOTE 2 An invocation or exception link signifies a transient object in the flow of execution control between two processes. 232

3.58 233
process 234
transformation of one or more objects in the system 235

3.59 236
process class 237
pattern for processes that perform the same object transformation pattern 238

3.60 239
property 240
modelling annotation common to all elements of a specific kind that serve to distinguish that element 241
 242
NOTE 1 Cardinality constraints, path labels, and structural link tags are frequent property annotations 243

NOTE 2 Unlike an attribute, the value of a property may not change during model simulation or operational 244
implementation. Each kind of element has its own set of properties. 245

NOTE 3 Property is an attribute of an element in the OPM metamodel. 246

3.61 247
refineable, noun 248
<OPM> thing amenable to refinement, which can be a whole, an exhibitor, a general, or a class 249

3.62 250
refinee 251
thing that refines a refineable, which can be a part, a feature, a specialization, or an instance 252
 253

NOTE Each of the four kinds of refinees has a corresponding refineable.(part-whole, feature-exhibitor, specialization-254
generalization, instance-class) 255

3.63 256
refinement 257
<model> elaboration that increases the extent of detail and the consequent model completeness 258

3.64 259
resultee 260

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 7

transformee that a process occurrence creates 261

3.65 262
stakeholder 263
<OPM> individual, organization, or group of people that has an interest in, or might be affected by the system 264
being contemplated, developed, or deployed 265

3.66 266
stateful object 267
object with specified states 268

3.67 269
stateless object 270
object lacking specified states 271

3.68 272
state 273
<object> possible situation or position of an object 274
 275
NOTE In OPM there is no concept of process state, such as "started", "in process", or "finished" within a model. Instead, 276
OPM represents and models subprocesses, such as starting, processing, or finishing. Also see discussion of OPM 277
process metamodel in Annex C. 278

3.69 279
state 280
<system> snapshot of the system model taken at a certain point in time, which shows all the existing object 281
instances, current states of each stateful object instance, and the process instances, with their elapsed times, 282
executing at the time the snapshot occurs 283

3.70 284
state expression 285
refinement involving the revealing of any proper subset of an object's set of states 286

3.71 287
state suppression 288
abstraction involving the hiding of any proper subset of an object's set of states 289

3.72 290
structural link 291
graphic notation of structural relation in OPM 292

3.73 293
structural relation 294
operationally invariant connection or association between things 295
 296

NOTE Structural relations persist in the system for at least some interval of time. They provide the structural aspect of 297
the system, and are not contingent upon conditions that are time-dependent. 298

3.74 299
structure 300
<OPM> collection of objects in an OPM model and the non-transient relations or associations among them 301

3.75 302
System Diagram 303
SD 304
OPD with one systmeic process indicating the system function and the objects connecting with that function to 305
depict the overall context for and top-level view of the system 306
 307

ISO/PDPAS 19450

8 © ISO 2014 – All rights reserved

NOTE SD is the root of the OPD process tree and has no extent of detail beyond the overall context depicted, i.e. no in-308
zoomed refinee is present. Any OPD other than SD is a node in the OPD process tree resulting from refinement. 309

3.76 310
thing 311
<OPM> object or process 312

3.77 313
transformation 314
creation (generation, construction) or consumption (elimination, destruction) of an object or a change in the 315
state of an object 316
 317
NOTE Only a process can perform transformation. 318

3.78 319
transformee 320
object that a process transforms (creates, consumes, or affects) 321

3.79 322
transforming link 323
consumption link, effect link, or result link 324

3.80 325
unfolding 326
refinement that elaborates a refinee with additional detail comprising other things and the links between them. 327
 328
NOTE 1 The four kinds of unfolding are part unfolding, feature unfolding, specialization unfolding, and instance unfolding 329
 330

NOTE 2 Unfolding is primarily applied to objects for exposing details about the unfolded object. 331

3.81 332
value 333
<attribute> state of an attribute 334

3.82 335
value 336
<functional> benefit at cost that the system's function delivers 337

4 Symbols 338

 339

 object 340

 physical object 341

 environmental object 342

 process 343

 physical process 344

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 9

 environmental process 345

 state 346

 aggregation-participation 347

 exhibition-characterization 348

 generalization-specialization 349

 classification-instantiation 350

 unidirectional tagged structural link 351

 bidirectional tagged structural link 352

 link 353

 link 354

 effect link 355

 consumption link 356

 result link 357

 input-output link pair 358

 instrumental event link 359

 consumption event link 360

 instrumental condition link 361

 consumption condition link 362

 invocation link 363

ISO/PDPAS 19450

10 © ISO 2014 – All rights reserved

 self-invocation link 364

 over-time exception 365

 under-time exception 366

 367
 368

5 Conformance 369

Anticipating that the implementation of this Publically Available Specification by toolmakers and utilization by 370
end-users is likely to occur in increments over time, several kinds of conformance criteria are appropriate. 371

a) Partial (symbolic) conformance with Object-Process Methodology, through utilizing the language part of 372
Object-Process Methodology, namely OPM Semantics and Syntax: 373

1) using only OPM symbols defined in Clause 4 of this document with the meaning assigned to them in 374

this document; and, 375

2) using only OPM elements defined in Clause 7 through Clause 12 of this document with the meaning 376
assigned to them in this document. 377

b) Full conformance with Object-Process Methodology: 378

1) conformance with (a) above; and, 379

2) conformance with the approach and scheme of modelling systems with OPM, as defined in Clause 6 380
and Clause 14 of this document. 381

c) Conformance by toolmakers: 382

1) conformance with (a) above; 383

2) provision for (b) – users are guided and helped to adhere to (b) on the basis of the formalism of (a); 384
and, 385

3) support for OPL according to the EBNF definition specified in Error! Reference source not found. of 386
his document. 387

6 Object-Process Methodology principles and concepts 388

6.1 OPM modelling principles 389

6.1.1 Modelling as a purpose-serving activity 390

System function and modelling purpose shall guide the scope and extent of detail of an OPM model. A 391
complex or complicated system may involve many stakeholders, including the beneficiary, owner, users, and 392
regulators, as well as many hardware and software components, exposing different aspects relevant to each 393
stakeholder. The function or benefit expectations of stakeholders in general and beneficiaries in particular 394
shall identify and prescribe the modelling purpose. This, in turn, shall determine the scope of the system 395
model. 396

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 11

EXAMPLE For a manufacturing plant that produces widgets, the viewpoint of the marketing manager, who cares about 397
supply rates and dates, does not include the machines in the plant that are used as instruments for making widgets, which 398
are not affected by the marketing process. However, from the viewpoint of the maintenance manager, the machines 399
definitely are affected as they become worn during operation and need to be maintained, both to prevent them from 400
breaking and to fix them when they do break. Therefore, the OPM manufacturing plant model for the marketing manager 401
will differ substantially from that constructed for the maintenance manager. 402

6.1.2 Unification of function, structure, and behaviour 403

The OPM structure model of a system shall be an assembly of the physical and informatical (logical) objects 404
connected by structural relations. During the lifetime of a system, creation and destruction of those structural 405
relations may occur. 406

The OPM behaviour model of a system, referred to as its dynamics, shall reflect the mechanisms that act on 407
the system over time to transform systemic objects, i.e. objects that are internal to the system, and/or 408
environmental objects, i.e. objects that are external to the system. 409

The combination of system structure and behaviour enables the system to perform a function, which shall 410
deliver the (functional) value of the system to at least one stakeholder, who is the system's beneficiary. An 411
OPM model integrates the functional (utilitarian), structural (static), and behavioural (dynamic) aspects of a 412
system into a single, unified model. Maintaining focus from the viewpoint of overall system function, this 413
structure-behaviour unification provides a coherent single frame of reference for understanding the system of 414
interest, enhancing its intuitive comprehension while adhering to formal syntax. 415

6.1.3 Identify functional value 416

The functional value providing process of a modelled system shall express the function of the system as 417
perceived by the system's main beneficiary or beneficiaries group. Identifying and labelling this primary 418
process, the system's function, is a critical first step in constructing an OPM model according to the 419
methodology prescription of the Object-Process Methodology approach. An appropriate function label or name 420
should clarify and emphasize the central goal of the modelled system and the functional value that the system 421
should provide for its main beneficiary. Modelling with OPM should begin by defining, naming, and depicting 422
the function of the system as its primary process. 423

NOTE Such a deliberation, which often provokes a debate between the system architecture team members at this 424
early stage, is extremely useful, as it exposes differences and often even misconceptions among the participants 425
regarding the system which they set out to architect, model, and design. 426

After the function of the system aligns with the functional value expectation of its main beneficiary, the 427
modeller shall identify and add other principal stakeholders to the OPM model. 428

6.1.4 Function versus behaviour 429

The value of the function to the beneficiary is often implied and expressed in process terms, which emphasize 430
what happens, the behaviour, rather than the purpose, the functional value, for which the primary process 431
happens. The modeller should distinguish between function and behaviour to create a clear and unambiguous 432
system model. This distinction is essential because in many situations a system's function is achievable by 433
different concepts, each implementing a different design and behaving differently. 434

EXAMPLE Consider a system for enabling humans to cross a river with their vehicles. Two obvious concepts are a 435
static structure to enable car crossing and a dynamic moving element carrying cars. The corresponding system designs 436
are a bridge and a ferry. While the function and the primary process – River Crossing – are identical for both designs, 437
they differ dramatically in their structure and behaviour. 438

Failure to recognize the difference between function and behaviour may lead to a premature choice of a sub-439
optimal design. In the example above, this could result in making a decision to build a bridge without 440
considering the possibly superior ferry option at all. 441

ISO/PDPAS 19450

12 © ISO 2014 – All rights reserved

6.1.5 System boundary setting 442

The system's environment shall be a collection of things, which are outside of the system but which may 443
interact with the system, possibly changing the system and its environment. The modeller shall distinguish 444
these environmental things, which are not part of the system, from systemic things, which are part of the 445
system. The modeller is not able to architect, design or manipulate the structure and behaviour of 446
environmental things even though those environmental things may influence or be influenced by the system. 447

6.1.6 Clarity and completeness trade-off 448

Overwhelming detail and complicatedness are inherent in real-life systems. Making such systems 449
understandable entails a trade-off that should balance between two conflicting criteria: clarity and 450
completeness. Clarity shall be the extent of unambiguous comprehension that the system’s structure and 451
behaviour models convey. Completeness shall be the extent of specification for all the system's details. These 452
two model attributes conflict with each other. On the one hand, completeness requires the full stipulation of 453
system details. On the other hand, the need for clarity imposes an upper limit on the extent of detail within an 454
individual model diagram, after which comprehension deteriorates because of clutter and overloading. 455

Establishing an appropriate balance requires careful management of context during model development. The 456
increase in the expression of completeness in a given model diagram often results in the reduction of clarity. 457
However, the modeller may take advantage of the union of information provided by the entire OPM system 458
model and have one diagram which is clear and unambiguous but not complete, and another that focuses on 459
completeness for some portion of the system with more detail. 460

6.2 OPM Fundamental concepts 461

6.2.1 Bimodal representation 462

An OPM model shall be bimodal with expression in semantically equivalent graphics and text representations. 463
Each OPM model graphical diagram, i.e. an Object-Process Diagram (OPD), shall have an equivalent OPM 464
textual paragraph comprised of one or more OPM language sentences using the Object-Process Language 465
(OPL). 466

NOTE 1 The bimodal graphics-text representation of the OPM model helps to involve non-technical stakeholders in the 467
requirements elicitation and initial conceptual modelling of the system under development. This involvement engages 468
those stakeholders as active participants and helps detect errors soon after their inadvertent introduction. The bimodal 469
representation also helps novice OPM users quickly gain familiarity with the semantics of the OPM graphic modality when 470
inspecting the text and corresponding graphic in tandem. 471

NOTE 2 Annex A specifies the OPL syntax using the conventions of ISO/IEC 14977. 472

NOTE 3 For most of the OPD figures throughout this International Standard, the corresponding paragraph of OPL 473
sentences accompanies the graphical OPD. 474

6.2.2 OPM modelling elements 475

Elements, the basic building blocks of any system modelled in the Object-Process Methodology (OPM), shall 476
be of two kinds: things and links. The modelling elements of object and process shall designate things in the 477
model context. The modelling element of link shall designate associations between things in the model context. 478
Objects shall be stateless or have object states. Links shall be either procedural or structural. 479

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 13

 480

Figure 1 — OPM metamodel overview 481

Within an OPM model, modelling elements shall have unique symbols, textual expression, syntactic 482
constraints and semantic interpretation. Within an OPM model, each modelled thing shall have a unique 483
identifying name of relevance to model stakeholders and unique source and destination things shall 484
distinguish each link or tagged link. A modelled link, together with its source and destination things shall be an 485
OPM construct that has a corresponding OPL sentence. 486

Once identified, a modelled thing may appear in any relevant context for that thing and may appear more than 487
once in a context to enhance understanding. 488

6.2.3 OPM things: objects and processes 489

An object shall be a thing, which, once constructed, exists or can exist physically or informatically. 490
Associations among objects shall constitute the object structure of the system being modelled, i.e. the static, 491
structural aspect of the system. An object state shall be a particular situational classification of an object at 492
some point during its lifetime. At every point in time, an object with an object state is in one of its states or in 493
transition between two of its states as a consequence of a process currently affecting that object. 494

A process shall be a thing that expresses the transformation of objects in the system. A process is always 495
associated with and occurs or happens to one or more objects; it does not exist in isolation. A process 496
transforms objects by creating them, consuming them, or changing their state. Thus, processes complement 497
objects by providing the dynamic, behavioural aspect of the system. 498

NOTE Inspecting processes to determine which subprocess is performing at the point in time of inspection reveals the 499
status of a process. OPM does not specify explicitly the model state of a process. See process metamodel in Annex C. 500

6.2.4 OPM links: procedural and structural 501

Procedural links shall denote procedural relations. A procedural relation shall specify how the system operates 502
to attain its function, designating time-dependent or conditional initiating of processes, which transform objects. 503

Structural links shall denote structural relations. A structural relation shall specify an association that persists 504
in the system for at least some interval of time, i.e. a static aspect of the system, and shall not be contingent 505
upon conditions that are time-dependent. 506

ISO/PDPAS 19450

14 © ISO 2014 – All rights reserved

6.2.5 OPM context management 507

OPM shall provide mechanisms for managing the contextual scope of model detail to promote both 508
comprehension and clarity. From the initial functional model context, the modeller shall use refinement of 509
object and process structure to extend model detail with each incremental extent of detail comprising a 510
contextual focus. 511

To achieve the system function, a set of non-trivial processes shall comprise a hierarchical network of sub-512
processes. The process hierarchy shall induce a partial order on the processes, i.e. some processes end 513
before others can start, while other processes may occur in parallel or as alternatives. At any extent of detail 514
in the process hierarchy, a process in a system should provide or contribute functional value as part of its 515
ancestor process. 516

The fundamental unit of context management is the Object-Process Diagram (OPD) that depicts the modelling 517
elements of that particular context. New diagram unfolding and new diagram in-zooming provide structural 518
and procedural connections between contexts. Although any OPD may include any number of elements, only 519
those elements pertinent to the particular context should appear in the OPD. 520

The management context for names and labels of things and links shall be the entire OPM model for which 521
separate model fragments contextualize the relationships and interactions among model elements that 522
produce behaviour. Relations to their refineables disambiguate identical names for different things. 523

6.2.6 OPM model implementation (informative) 524

6.2.6.1 Conceptual models versus runtime models 525

When constructing models with OPM, modellers need to understand the distinction between the conceptual 526
model they are creating and an operational occurrence of that model that they may use to assess system 527
behaviour. Practicing modellers have an intuitive sense for this distinction, readily thinking of modelling 528
element operational instance occurrences when creating a model, even when those elements are very 529
abstract. However, those not familiar with modelling of the kind OPM supports may find the specification of 530
this Publically Available Specification somewhat confusing. 531

An OPM model is a formal framework within which object and process occurrences interact by means of links. 532
Because an OPM model has this kind of framework, akin to the system's structure, and model elements 533
interact using links, the modeller may simulate system behaviour by creating object and process operational 534
instance occurrences, and then follow the flow of execution control embodied in the connections and OPM 535
semantic rules. The presence of thing occurrences translates the abstract conceptual model into a more 536
concrete runtime form. 537

Annex D presents OPM facilities to support simulation activities. However, as the users of this Publically 538
Available Specification construct OPM models, they need to keep in mind that the behaviour of the modelled 539
system occurs only when operational instance occurrences of things exist. The appearance of a link between 540
two things does not imply behaviour until operational instance occurrences of those things exist. The word 541
'runtime', i.e. when operational instance occurrences do exist, is implicit in every specification statement 542
provided herein. 543

NOTE The word 'instance' also occurs with a different meaning in the presentation of the classification-instantiation 544
relation. In that usage, an instance is a refinee typical of the class. 545

6.2.6.2 OPM model realization 546

The conceptual framework for OPM includes the capability for model simulation. To use this capability 547
successfully, a modeller needs to understand the distinction between a model as a representation of a pattern 548
of structure and behaviour and an instance of the model operating to perform the function for which the model 549
is a pattern. The model has an architectural form, based in part on the arrangement of structure and 550
procedure, which the modeller extends with detail as the model design evolves. A model expressing 551
consistent detail is implementable as a simulation, i.e. capable of realizing resources, using processes to 552
transform objects, and to produce functional value to a beneficiary. 553

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 15

6.2.6.3 OPD Navigation and OPL composition 554

This Publicly Available Specification expresses the means for creating OPM model diagrams and 555
corresponding OPL texts. The in-zooming and unfolding mechanisms of Clause 14 provide ways to link OPD 556
diagrams with corresponding OPL to express the linkage as text. However, because there are many ways to 557
label these links, some of which may be specific to a tool implementation, Clause 14 does not specify the 558
labels to assign for identifying successive hierarchic levels, linkage between related OPD diagrams, or OPL 559
segments. 560

7 OPM thing syntax and semantics 561

7.1 Objects 562

7.1.1 Description 563

An object shall be a thing that exists or has the potential of physical or informatical existence. From the 564
temporal viewpoint, the existence of an object shall be persistent. As long as no process acts on the object, it 565
shall remain in its current implicit or explicit state. 566

An OPM object is an abstract category identifier for a pattern of structure, properties and features, i.e. 567
attributes and operations, that are applicable to operational instance objects of that category. Within 568
constraints of the model, any non-negative number of object operational instances may exist. 569

7.1.2 Representation 570

A rectangular box containing a label, the object name, shall signify graphically the presence of a model object. 571
Figure 2 graphically illustrates the object Vehicle Occupant Group. In OPL text, the object name shall appear 572
in bold face with capitalization of each word. 573

 574

Figure 2 — Object graphic notation 575

NOTE Sub-clause B.6.2 discusses conventions for naming objects. 576

7.2 Processes 577

7.2.1 Description 578

A process shall be a thing that transforms one or more objects. Transformation may be generation 579
(construction, creation), effect, or consumption (destruction, elimination). A process shall have positive 580
performance time duration. 581

An OPM process is an abstract category identifier for a pattern of transformation. For the concrete, operational 582
instance realization, a process instance is a specific occurrence of the process pattern that the category 583
specifies. The process operational instance transforms one or more object operational instances. 584

NOTE 1 A process may directly invoke another process, by means of the invocation link (see sub-clause 9.5.2.5.2), 585

which results in the invoking process creating a transient object that the invoked process immediately consumes. 586

NOTE 2 The effect of a process on an object is usually a change in that object's state. However, there are persistent 587
processes whose effect is state maintenance. Rather than inducing a change, the semantics of a persistent process is to 588
leave the object in a steady state by leaving the object in its current state. 589

EXAMPLE The process Existing is the most prominent persistent process; it describes a static (implicit) state of 590
existence. Examples of other persistent processes are Holding, Maintaining, Keeping, Staying, Waiting, Prolonging, 591

ISO/PDPAS 19450

16 © ISO 2014 – All rights reserved

Extending, Delaying, Occupying, Persisting, Continuing, Supporting, Withholding, and Remaining. For biological 592
objects, Existing entails Living – actively maintaining the necessary life processes. 593

7.2.2 Representation 594

An ellipse containing a label, the process name, shall signify graphically the presence of the abstract process 595
category. Figure 3 graphically illustrates the process Automatic Crash Responding. In OPL text, the process 596
name shall appear in bold face with capitalization of each word. 597

 598

Figure 3 — Process graphic notation 599

NOTE Sub-clause B.6.3 discusses conventions for naming processes. 600

7.3 OPM things 601

7.3.1 OPM thing defined 602

An OPM thing shall be an object or a process. Objects and processes are symmetric in many regards and 603
have much in common in terms of relations, such as aggregation, generalization and characterization. An 604
object exists while a process happens to one or more objects. OPM objects and OPM processes depend on 605
each other in the sense that a process is necessary to transform an object, while at least one object to 606
transform is necessary for a process to occur or happen. 607

7.3.2 Object-process test 608

To apply OPM in a useful manner, the modeller needs to make the essential distinction between objects and 609
processes, as a prerequisite for successful system analysis and design. By default, a noun shall identify an 610
object. The object-process test provides modellers with criteria to distinguish nouns used for processes from 611
nouns used for objects. Providing a correct answer to the question about whether a given noun is an object or 612
a process is crucial and fundamental to object-process methodology. 613

To be a process, a noun or noun phrase shall satisfy each of the following three process criteria: 614

 time association, the noun in question associates with the passage of time; 615

 verb association, the noun in question derives from, or has a common root with a verb, or has a 616
synonym that associates with a verb; and 617

 object transformation, the noun in question occurs, happens, performs, executes, transforms, changes, 618
or alters at least one object, or maintains it in its current state. 619

EXAMPLE Flight is a noun that is a process because it passes all three object-process test criteria: 1) it has a time 620
association; 2) it associates with the verb to fly; and 3) it transforms Airplane by changing the value of its location attribute 621
from source to destination. 622

7.3.3 OPM thing generic properties 623

All OPM things shall have the following three generic properties: 624

 Perseverance, which pertains to the thing’s persistence and denotes whether the thing is static, i.e. 625
an object, or dynamic, i.e. a process. While objects are persistent, i.e. they have static perseverance, 626
and processes are transient, i.e. they have dynamic perseverance, boundary examples of persistent 627

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 17

processes (see 7.2.1), as well as of transient objects (see sub-clause 9.5.2), may exist. Accordingly, 628
the permissible value for the Perseverance property is static, dynamic or persistent. 629

 Essence, which pertains to the thing’s nature and denotes whether the thing is physical or 630
informatical. Accordingly, the permissible value of the generic attribute Essence is physical or 631
informatical. 632

 Affiliation, which pertains to the thing’s scope and denotes whether the thing is systemic, i.e. part of 633
the system, or environmental, i.e. part of the system’s environment. Accordingly, the value of the 634
property Affiliation is systemic or environmental. 635

Graphically, as shown in Figure 4, shading effects shall denote physical OPM things and dashed lines shall 636
denote environmental OPM things. All eight Perseverance-Essence-Affiliation generic property 637
combinations of an OPM thing shown in Figure 4 may occur. The lower portion of Figure 4 expresses, from left 638
to right and top to bottom, the OPL sentences corresponding to the graphical elements. 639

 640

Informatical Systemic Process is an informatical and systemic process. 641
Physical Systemic Process is a physical and systemic process. 642
Informatical Systemic Object is an informatical and systemic object. 643
Physical Systemic Object is a physical and systemic object. 644
Informatical Environmental Process is an informatical and environmental process. 645
Physical Environmental Process is a physical and environmental process. 646
Informatical Environmental Object is an informatical and environmental object. 647
Physical Environmental Object is a physical and environmental object. 648

Figure 4 — OPM thing generic attribute combinations 649

7.3.4 Default values of thing generic properties 650

The default value of the Affiliation generic property of a thing shall be systemic. 651

Any non-trivial system tends to have a majority of objects and processes with the same thing generic property 652
values for Essence. 653

EXAMPLE Data processing systems are informatical, although they have physical components. A transportation 654
system, such as a railway system or an aviation system, is physical, although they have informatical components. 655

A system's Primary Essence shall be the same as that of the majority thing Essence values within the system 656
boundary. 657

The default value of the Essence generic property of a thing within the boundary of a system shall be the 658
Primary Essence of the system. 659

NOTE A supporting tool should provide an option for the modeller to specify a system's Primary Essence as a means to 660
establish the default thing generic attribute value for Essence. 661

ISO/PDPAS 19450

18 © ISO 2014 – All rights reserved

The OPL corresponding to a diagram shall not reflect the default values of thing generic properties unless the 662
thing does not yet connect to another thing, e.g., during the course of the modelling process. As soon as links 663
to other things appear, thing generic properties shall merge as appropriate into OPL phrases describing these 664
links. 665

7.3.5 Object states 666

7.3.5.1 Stateful and stateless objects 667

Object state shall be a possible situation in which an object may exist. An object state has meaning only in the 668
context of the object to which it belongs, i.e. the object that has the state. 669

A stateless object shall be an object that has no specification of states. 670

A stateful object shall be an object with a specified set of permissible states. In a runtime model, at any point 671
in time, any stateful object operational instance is at a particular permissible state or exists in transition 672
between two permissible states as a consequence of a process currently affecting that object. 673

NOTE 1 Depending upon model behaviour, operational instances of an object may be at different states. 674

NOTE 2 Sub-clause B.6.4 discusses conventions for naming object states. 675

7.3.5.2 Object state representation 676

Graphically, a labelled, rounded-corner rectangle (a 'rountangle') placed inside the object to which it belongs 677
shall denote an object state. In OPL text, the object state label shall appear in bold face without capitalization. 678

EXAMPLE Figure 5 depicts the object Museum Visitor with two states labelled inside the museum and out of the 679
museum. Below the graphical representation is the corresponding OPL sentence. 680

 681

Museum Visitor can be inside the museum or out of the museum. 682

Figure 5 — A stateful object with two states 683

7.3.5.3 Initial, default, and final states 684

The initial state of an object shall be its state as the system begins operating or its state upon generation by 685
the system during operation. The final state of an object shall be its state as the system completes operation 686
or its state upon consumption by the system during operation. The default state of an object shall be the state 687
in which the object is most likely to be upon random inspection. 688

NOTE 1 An object may have zero or more initial states, zero or more final states, and zero or one default state. The 689
same state can be any combination of initial, final and/or default. 690

NOTE 2 The initial and final states are especially useful for objects that exhibit a lifecycle pattern, such as a product or 691
an organism or a system. 692

NOTE 3 If an object has more than one initial state, then it is possible to assign to each initial state a probability of the 693
object being created in that state (see 12.7). 694

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 19

7.3.5.4 Initial, default, and final state representation 695

Graphically, a thick contour border shall denote an initial state, a double contour border shall denote a final 696
state, and an open arrow pointing diagonally from the left shall denote a default state. The corresponding OPL 697
sentences make the state specification explicit. 698

EXAMPLE Figure 6 depicts the object Specification with initial, default and final states. Below the graphical 699
representation are the corresponding OPL sentences. 700

 701

State preliminary of Specification is initial. 702
State approved of Specification is default. 703
State cancelled of Specification is final. 704

Figure 6 — A stateful object with initial, default, and final states 705

7.3.5.5 Attribute values 706

Since an attribute is an object, an attribute value shall correspond to a state in the sense that a value is a state 707
of an attribute. An object may have an attribute, which is a different object, and for some time interval during 708
the existence of the object exhibiting that attribute, the value of that attribute is the state of the different object. 709

EXAMPLE Considering Temperature in degrees Celsius as an attribute of Engine, 75 is a value of that attribute. 710

NOTE 1 Since an attribute is a stateful object, a permissible attribute value is a member of the set of permissible states 711
of that stateful object. An enumerated list or a set of one or more ranges of numbers may define the set of permissible 712
values for the attribute. 713

NOTE 2 In contrast, a property value is fixed and does not change during model operation. 714

Attributes with values expressed in measurement units shall express the measurement unit graphically in an 715
OPD within brackets below the attribute object name and express the measurement unit in text after the 716
attribute object name in corresponding OPL sentences, e.g., Temperature in degrees Celsius. 717

8 OPM link syntax and semantics overview 718

8.1 Procedural link overview 719

8.1.1 Kinds of procedural links 720

A procedural link shall be one of three kinds: 721

 Transforming link, which connects a transformee (an object that the process transforms) or one of its 722
states with a process to model object transformation, namely generation, consumption, or state change of 723
that object as a result of the process performance; 724

 Enabling link, which connects an enabler (an object that enables the process occurrence but is not 725
transformed by that process), i.e. an agent or an instrument, or its state, with a process to model an 726
enabling presence for that process; or 727

 Control link, which is a transforming or an enabling link with the added semantics of an execution control 728
mechanism to model an event that initiates a linked process, to model a condition for process 729
performance, or to model a connection of two processes denoting invocation, or exception. 730

ISO/PDPAS 19450

20 © ISO 2014 – All rights reserved

NOTE Transformee and enabler are roles an object may have with respect to the process to which they link. Hence, 731
an object may have the role of an enabler for one process and a transformee for another process. 732

8.1.2 Procedural link uniqueness OPM principle 733

A process shall connect with a transforming link to at least one object or object state. At any particular extent 734
of abstraction, an object or any one of its states shall have exactly one role as a model element with respect to 735
a process to which it links: the object may be a transformee, an enabler, an initiator, or a conditional object. At 736
a given extent of abstraction, an object or an object state shall link to a process by only one procedural link. 737

8.1.3 State-specified procedural links 738

Each procedural link may be qualified as a state-specified procedural link. A state-specified procedural link 739
shall be a procedural link that connects a process to a specified state of an object. 740

8.2 Operational semantics and flow of execution control 741

8.2.1 The Event-Condition-Action control mechanism 742

The Event-Condition-Action paradigm shall provide the OPM operational semantics and flow of execution 743
control. At the point in time of object creation, or appearance of the object from the system's perspective, or 744
entrance of an object to a particular state, an event shall occur. At runtime, for objects that are the source of a 745
link with a process, e.g. enabler of a process, the occurrence of an event shall initiate evaluation of the 746
precondition for every process to which the object links as a link source. 747

When the precondition evaluation for a process begins, the event shall cease to exist for that process. If and 748
only if the evaluation reveals satisfaction of the precondition shall the process start performance of the 749
process and action occurs. 750

Starting performance of a process has two prerequisites: 1) an initiating event, and 2) satisfaction of a 751
precondition. Thus, events and preconditions in concert specify OPM flow of execution control for process 752
performance. 753

NOTE Invocation and exception are event-condition-actions that occur only between processes. 754

The flow of execution control shall be the consequence of successive Event-Condition-Action sequences that 755
begin with initiation of the system function by an external event and end when the system function is complete. 756

8.2.2 Preprocess object set and postprocess object set 757

The preprocess object set of a process shall determine the precondition to satisfy before performance of that 758
process starts. The preprocess object set may be complex and include compound logical expressions, or may 759
simply include the existence of one or more objects, possibly in specified states. Typical objects in a 760
preprocess object set are consumees, i.e. objects the process consumes, affectees, i.e. objects the process 761
affects, and process enablers. Some of these objects may have a further stipulation regarding flow of 762
execution control, i.e. a condition link. Every process shall have a preprocess object set with at least one 763
object, possibly in a specified state. 764

The postprocess object set shall determine the postcondition that process completion satisfies. The 765
postprocess object set may be complex and include compound logical expressions, or may simply include the 766
existence of one of more objects, possibly in specified states. Typical objects in a postprocess object set are 767
resultees, i.e. objects the process generates and affectees, i.e. objects the process affects. Every process 768
shall have a postprocess object set with at least one object, possibly in a specified state. 769

NOTE 1 The intersection of the preprocess object set and the postprocess object set of the same process includes the 770
process enablers and affectees. Consumees are only members of the preprocess object set, while resultees are only 771
members of the postprocess object set. 772

NOTE 2 Clause 14.2.2.4.4 presents the operational instance semantics for objects in the involved object set. 773

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 21

 774

8.2.3 Skip semantics of condition vs. wait semantics of non-condition links 775

A process preprocess object set may include both condition links (see 9.5.3) and non-condition links, i.e. 776
procedural links without the condition control modifier. The distinguishing aspect of condition links is their 'skip 777
semantics', which provide for skipping or bypassing a process if the source object operational instance of the 778
condition link does not exist. Without the condition link qualification, the non-existence of a source object 779
operational instance causes the process to wait for another event and operational instances of all source 780
objects to exist, possibly in a specified state, thus satisfying the precondition. 781

If there are one or more non-condition links and one or more condition links, the existence of all of them shall 782
be necessary to satisfy the precondition and start the process. However, if there are one or more unsatisfied 783
non-condition links and one or more unsatisfied condition links, a conflict arises between the wait semantics of 784
the former and the skip semantics of the latter. To resolve the conflict, the skip semantics of the condition links 785
shall be stronger than the wait semantics of their non-condition counterparts and the flow of execution control 786
bypasses the process, which does not start its performance or generate an exception. 787

Even if just one of the conditions attendant to the condition links connecting with the process does not exist, 788
the precondition satisfaction evaluation shall fail, execution control skips the process, and an event occurs for 789
the next sequential process(es) by means of an invocation link of some kind, see 9.5.2.5 and 14.2.2. 790

NOTE 1 There is no result event link or result condition link, because these are outgoing procedural links relating to the 791
postprocess object set. When a process completes, it creates the postprocess object set without further condition, so there 792
is no condition on the creation of resultees or change of affectees. Creation of an object, possibly at a specified state, in 793
the postprocess object set may serve as an event or condition for the next sequential process(es). 794

NOTE 2 To achieve robust flow of execution control under all circumstances, the modeller should model premature 795
process ending without completion as exception handling (see 9.5.4). 796

9 Procedural links 797

9.1 Transforming links 798

9.1.1 Kinds of transforming links 799

A transforming link shall specify a connection between a process and its transformee (the object it consumes, 800
creates, or changes the object state). The three kinds of transforming links shall be consumption link, result 801
link, and effect link. Figure 7 illustrates the three kinds of transforming connections with the corresponding 802
OPL sentences below the graphical representation. 803

 804

Creating yields File Editing affects File Deleting consumes File 805

Figure 7 — Transforming links: left – result, middle – effect, right – consumption 806

A transformee shall be a role that an object has with respect to a given process. The same object may have a 807
different role for another process. 808

ISO/PDPAS 19450

22 © ISO 2014 – All rights reserved

9.1.2 Consumption link 809

A consumption link shall be a transforming link specifying that the linked process consumes (destroys, 810
eliminates) the linked object, the consumee. 811

Graphically, an arrow with a closed arrowhead, as shown in Figure 7, pointing from the consumee to the 812
consuming process shall denote the consumption link. 813

The syntax of a consumption link OPL sentence shall be: Processing consumes Consumee. 814

Existence of the consumee shall be a precondition, or part of the precondition, for process activation. If the 815
consumee does not exist, i.e. no operational instance of the consumee exists, then process activation shall 816
wait for the consumee to exist. 817

The consumption shall be immediate upon process activation, unless the modeller needs to model 818
consumption of the object over time. In this case, the consumption link shall have a property that indicates the 819
rate of consumption of the consumee and the consumee shall have an attribute that indicates the available 820
quantity. 821

NOTE 1 The modeller may create an exception if the object quantity is less than the rate times the expected process 822
duration. 823

NOTE 2 See 11.1 for the denotation of link properties. 824

EXAMPLE 1 Steel Rod is a consumee for the process Machining, which generates the resultee Shaft. Once 825
Machining has started, it consumes Steel Rod. 826

EXAMPLE 2 Water is a consumee for the process Irrigating. The consumee has an attribute Quantity [liter] with value 827
1000 and the consumption link has a property Flow Rate [liter/sec] with value 50. In this case, if Irrigating is 828
uninterrupted, it will last 20 seconds, and it will consume Water at the specified Flow Rate value. 829

9.1.3 Result link 830

A result link shall be a transforming link specifying that the linked process creates (generates, yields) the 831
linked object, which is the resultee. 832

Graphically, an arrow with a closed arrowhead, as shown in Figure 7, pointing from the creating process to the 833
resultee shall denote a result link. 834

The syntax of a result link OPL sentence shall be: Processing yields Resultee. 835

The generation of the resultee shall be immediate upon process completion, unless the modeller needs to 836
model the generation of the object over time. In this case, the result link shall have a property that indicates its 837
rate of resultee generation and the resultee shall have an attribute that indicates the available quantity. 838

NOTE See 11.1 for the denotation of link properties. 839

EXAMPLE 1 Steel Rod is a consumee for the process Machining, which generates the resultee Shaft. When 840
Machining completes, it generates Shaft. 841

EXAMPLE 2 Gasoline and Diesel Oil are resultees of the process Refining, which consumes Crude Oil. The resultees 842
Gasoline and Diesel Oil each have an attribute Quantity [cubic meter]. The Refining to Gasoline result link has the 843
property Gasoline Yield Rate [cubic meter/hour] with value 1000 and the Refining to Diesel Oil result link has the 844
property Diesel Oil Yield Rate [cubic meter/hour] with value 800. Assuming there is enough Crude Oil, if Refining 845
activates and performs for 10 hours, it will yield 10,000 cubic meters of Gasoline and 8,000 cubic meters of Crude Oil. 846

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 23

9.1.4 Effect link 847

An effect link shall be a transforming link specifying that the linked process affects the linked object, which is 848
the affectee, i.e. the process causes some unspecified change in the state of the affectee. 849

Graphically, a bidirectional arrow with two closed arrowheads, as shown in Figure 7, one pointing in each 850
direction between the affecting process and the affected object shall denote the effect link. 851

The syntax of an effect link OPL sentence shall be: Processing affects Affectee. 852

9.1.5 Basic transforming links summary 853

Table 1 — Basic transforming links summary 854

 855

9.2 Enabling links 856

9.2.1 Kinds of enabling links 857

An enabling link shall be a procedural link specifying an enabler for a process. An enabler for a process shall 858
be an object that is necessary for that process to occur. The existence and state of an enabler after the 859
process is complete shall be the same as just before the process began its performance. 860

The two kinds of enabling links shall be agent link and instrument link. 861

The enabler shall be present throughout the performance of the process that it enables. If, from the system's 862
viewpoint, the enabler ceases to exist during the performance of the process it enables, that process shall 863
immediately end. 864

NOTE 1 An enabler is a role an object has with respect to a given process. The same object may be an enabler for one 865
process and a transformee for another process. 866

NOTE 2 To achieve robust flow of execution control under all circumstances, the modeller should model premature 867
process ending without completion as exception handling (see 9.5.4). 868

9.2.2 Agent and Agent Link 869

An agent shall be a human or a group of humans capable of intelligent decision-making, who interact with the 870
system to enable or control the process throughout performance of the process. 871

ISO/PDPAS 19450

24 © ISO 2014 – All rights reserved

An agent link shall be an enabling link from the agent object to the process it enables, specifying that the 872
agent object is necessary for linked process activation and performance. 873

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from the agent 874
object to the process it enables shall denote an agent link. 875

The syntax of an agent link OPL sentence shall be: Agent handles Processing. 876

EXAMPLE 1 In the OPD in Figure 8, Welder is the agent for Welding. Performing the process of Welding the object 877
Steel Part A with the object Steel Part B to create Steel Part AB, requires a human Welder. Welder is the agent of 878
Welding. However, Welding does not transform the Welder, but Welding cannot take place without the Welder. 879

 880

Welder handles Welding. 881
Welding consumes Steel Part A and Steel Part B. 882
Welding yields Steel Part AB. 883

Figure 8 — Agent link example 884

EXAMPLE 2 In the OPD in Figure 8, if, for whatever reason, Welder goes away before Welding completes, then 885
Welding stops prematurely and the creation of Steel Part AB does not occur, although Welding already consumed Steel 886
Part A and Steel Part B. 887

9.2.3 Instrument and Instrument Link 888

An instrument shall be an inanimate or otherwise non-decision-making enabler of a process that is not able to 889
start or take place without the existence and availability of the instrument. 890

An instrument link shall be an enabling link from the instrument object to the process it enables, specifying 891
that the instrument object is necessary for linked process activation and performance. 892

Graphically, a line with an open circle resembling a white lollipop at the terminal end extending from the 893
instrument object to the process it enables shall denote an instrument link. 894

The syntax of an instrument link OPL sentence shall be: Processing requires Instrument. 895

EXAMPLE 1 A Manufacturing process may not consume or (disregarding wear and tear) change the state of a 896
Machine that enables the transformation of Bar Stock to Machined Part. In this context, the Machine is an instrument of 897
the Manufacturing process. 898

EXAMPLE 2 In the Figure 9 OPD, Sintering Oven is the instrument for Insert Set, because without it Sintering 899
cannot happen. However, while the Insert Set object is transformed (its state changes from pre-sintered to sintered), 900
disregarding wear and tear, Sintering Oven remains unaffected as a result of preforming the Sintering process. 901

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 25

 902

Insert Set can be pre-sintered or sintered. 903
Sintering requires Sintering Oven. 904
Sintering changes Insert Set from pre-sintered to sintered. 905

Figure 9 — Instrument link example 906

EXAMPLE 3 In the Figure 9 OPD, if during the Sintering process Sintering Oven ceases to exist, e.g., due to severe 907
cracking, Sintering will stop and Insert Set will not be in its sintered state, although it already left its pre-sintered state. 908

9.2.4 Basic enabling links summary 909

Table 2 — Enabling links summary 910

 911

Name Semantics Sample OPD & OPL Source Destination

Agent

Link

Agent is a human
or a group of
humans who
enables the
occurrence of the
process to which it
is linked but is not
transformed by that
process.

Welder handles Welding.

agent –
the
enabling
object

enabled
process

Instrument

Link

Instrument is an
inanimate object
that enables the
occurrence of the
process to which it
is linked but is not
transformed by that
process.

Manufacturing requires Machine.

instrument
– the
enabling
object

enabled
process

 912

9.3 State-specified transforming links 913

9.3.1 State-specified consumption link 914

A state-specified consumption link shall be a consumption link from a specified state of the consumee to the 915
linked process that consumes (destroys, eliminates) the object. Existence of the consumee in the specified 916
state shall be a precondition, or part of the precondition, for process activation. If the consumee is not in that 917
specified state, then process activation shall wait for the consumee to exist at that specified state. 918

Graphically, an arrow with a closed arrowhead pointing from the specified state of the object to the process, 919
which consumes the object, shall denote the state-specified consumption link. 920

ISO/PDPAS 19450

26 © ISO 2014 – All rights reserved

The syntax of a state-specified consumption link OPL sentence shall be: Process consumes specified-state 921
Object. 922

The consumption shall be immediate upon process activation, unless the modeller needs to model 923
consumption of the object over time. In this case, the consumption link shall have a property that indicates the 924
rate of consumption of the consumee and the consumee shall have an attribute that indicates the available 925
quantity. 926

NOTE 1 The modeller may create an exception if the object quantity is less than the rate times the expected process 927
duration. 928

NOTE 2 See 11.1 for the denotation of link properties. 929

EXAMPLE 1 Steel Rod at state pre-heat-treated is a consumee for the process Machining, which generates the 930
resultee Shaft. When Machining activates, it consumes pre-heat-treated Steel Rod, because this pre-heat-treated 931
Steel Rod is not available for any purpose other than becoming a Shaft resultee of this process. If Steel Rod previously 932
went through a Heat Treating process, it is at state heat-treated, and therefore not available to undergo Machining. 933

EXAMPLE 2 Continuing with EXAMPLE 1, Steel Rod is at state pre-heat-treated and has an attribute Quantity 934
[units] with value 600. The state-specified consumption link has a property Rate [units/hour] with value 60. When 935
Machining performs, it consumes the 600 Steel Rods after 10 working hours. 936

9.3.2 State-specified result link 937

A state-specified result link shall be a result link from a process to a specified state of the resultee object that 938
the process creates (generates, yields). Existence of the resultee at the specified state shall be a 939
postcondition, or part of the postcondition, upon completion of the generating process. 940

Graphically, an arrow with a closed arrowhead pointing from the process to the specified state of the object 941
shall denote the state-specified result link. 942

The syntax of a state-specified result link OPL sentence shall be: Process yields specified-state Object. 943

The generation of the resultee at the particular state shall be immediate upon process completion, unless the 944
modeller needs to model the generation of the object over time. In this case, the result link shall have a 945
property that indicates its rate of resultee generation and the resultee shall have an attribute that indicates the 946
available quantity at that specified state. 947

NOTE 1 See 11.1 for the denotation of link properties. 948

NOTE 2 At runtime an operating model may consist of multiple operational instances of an object with each operational 949
instance at a different state. 950

EXAMPLE 1 Steel Rod at state pre-heat-treated is a consumee for the process Machining, which generates the 951
resultee Shaft at state pre-heat-treated. A state-specified result link from Machining to the pre-heat-treated state of 952
Shaft denotes this model specification. 953

A result link yielding a stateful object with an initial state should attach at that object rectangle or one of its 954
states other than the initial state. 955

NOTE 3 The modeller may want the OPL on the right in Figure 10, but the OPL on the left reduces ambiguity. 956

EXAMPLE 2 957

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 27

A can be s1, s2, or s3.

S2 is initial.

P yields A.

A can be s1, s2, or s3.

S2 is initial.

P yields s2 A.

Figure 10 — Correct (left) and incorrect (right) result link to an object with an initial state 958

 959

9.3.3 State-specified effect links 960

9.3.3.1 Input and output effect links 961

An input source link shall be the link from a specified state of an object, an input source, to the transforming 962
process, while the output destination link shall be the link from the transforming process to a specified state of 963
an object, an output destination. These links provide three possible modelling situations in the context of a 964
single object linking to a single process: 1) input-output-specified effect link specifying both input source and 965
output destination states; 2) input-specified effect link specifying only the input source state; and 3) output-966
specified effect link specifying only the output destination state. 967

9.3.3.2 Input-output-specified effect link 968

An input-output-specified effect link shall be a pair of effect links, where the input source link connects to an 969
affecting process from a specified state of an affectee, and the output destination link connects from that same 970
process to a different output destination state of the same affectee. Existence of the affectee at the input 971
source state shall be a precondition, or part of the precondition, for affecting process activation. Existence of 972
the affectee at the output destination state shall be a postcondition, or part of the postcondition, upon affecting 973
process completion. 974

Graphically, a pair of arrows consisting of an arrow with a closed arrowhead from the input source state of the 975
affectee to the affecting process, the input source link, and a similar arrow from that process to the output 976
destination state of the affectee at process completion, the output destination link, shall denote the input-977
output-specified effect link. 978

The syntax of an input-output-specified effect link OPL sentence shall be: Process changes Object from 979
input-state to output-state. 980

EXAMPLE 1 The OPD in Figure 11 depicts state-specified consumption and result links. Machining can only consume 981
Raw Metal Bar in state cut and generate Part in state pre-tested. Cutting and Testing are environmental processes. 982
Cutting must precede Machining in order to change Raw Metal Bar from its pre-cut to its cut state, while Testing 983
changes Part from pre-tested to tested. 984

NOTE 1 In the case of an input-output-specified effect link, once an affecting process starts, it causes the object to exit 985
out of its input source state. However, the object reaches its output destination state only when the process completes. 986
Between process start and process completion, the affectee object is in transition between the two states. 987

EXAMPLE 2 In the OPD in Figure 11, Cutting takes Raw Metal Bar from its pre-cut to its cut state. As long as 988
Cutting is active, the state of Raw Metal Bar is in transition and bound to the Cutting process: Cutting takes it out of its 989
pre-cut state but has not yet brought it to its cut state with process completion. While Cutting the state of Raw Metal Bar 990
is indeterminate: it could be partly cut and reusable or mostly cut and unusable. In either case, it is not available for 991
Machining, since it is not in its cut state. 992

ISO/PDPAS 19450

28 © ISO 2014 – All rights reserved

 993

Raw Metal Bar is physical. 994
Raw Metal Bar can be pre-cut or cut. 995
Machine Operator is physical. 996
Coolant is physical. 997
Machining is physical. 998
Machining requires Coolant. 999
Machine Operator handles Machining. 1000
Part is physical. 1001
Part can be pre-tested or tested. 1002
Testing is environmental and physical. 1003
Cutting changes Raw Metal Bar from pre-cut to cut. 1004
Machining consumes Raw Metal Bar. 1005
Machining yields pre-tested Part. 1006
Testing changes Part from pre-tested to tested. 1007

Figure 11 — State-specified consumption and results links 1008

NOTE 2 If an active affecting process stops prematurely, i.e. it does not complete, the state of any affectee remains 1009
indeterminate unless exception handling resolves the object to one of its permissible states. 1010

9.3.3.3 Input-specified effect link 1011

An input-specified effect link shall be a pair of effect links, where the input source link connects to an affecting 1012
process from an input source state of the affectee, and the output destination link connects from the same 1013
process to the same affectee without specifying a particular state. The output destination state of the object 1014
shall be its default state or, if the object does not have a default state. then the state probability distribution of 1015
the object shall determine the output destination state of that object (see 12.7). 1016

Existence of the affectee at the input source state is a precondition, or part of the precondition, for affecting 1017
process activation. Existence of the affectee at any one of its states shall be a postcondition, or part of the 1018
postcondition, upon affecting process completion. 1019

Graphically, a pair of arrows consisting of an arrow with a closed arrowhead from the input source state of the 1020
affectee to the affecting process, the input link, and a similar arrow from that process to the affectee but not to 1021
any one of its states shall denote the input-specified effect link. 1022

The syntax of an input-specified effect link OPL sentence shall be: Process changes Object from input-state. 1023

9.3.3.4 Output-specified effect link 1024

An output-specified effect link shall be a pair of effect links, where the input source link connects to an 1025
affecting process from an affectee without specifying a particular state, and the output destination link 1026

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 29

connects from the same process to an output destination state of the same affectee. Existence of the affectee 1027
shall be a precondition, or part of a precondition, for affecting process activation. Existence of the affectee at 1028
the output destination state shall be a postcondition, or part of the postcondition, upon affecting process 1029
completion. 1030

Graphically, a pair of arrows consisting of an arrow with a closed arrowhead from the affectee without 1031
specifying a particular state, the input link, and a similar arrow from that process to an output destination state 1032
of that affectee, the output link, shall denote the output-specified effect link. 1033

The syntax of an input-specified effect link OPL sentence shall be: Process changes Object to output-state. 1034

 1035

ISO/PDPAS 19450

30 © ISO 2014 – All rights reserved

9.3.4 State-specified transforming links summary 1036

Table 3 — State-specified transforming links summary 1037

Name Semantics Sample OPD & OPL Source Destination

State-
specified

consumption
link

The process
consumes the
object if and
only if the object
is in the
specified state.

Eating consumes edible Food.

consumee
state

process

State-
specified
result link

The process
generates the
object in the
specified state.

Mining yields raw Copper.

process
resultee
state

Input-output-
specified
effect link

pair

(consisting of
one state-
specified input
link and one
state-specified
output link)

The process
changes the
object from a
specified input
state via the
input link to a
specified output
state via the
output link.

Purifying changes Copper from raw to
pure.

affectee
source
state

affecting
process

affecting
process

affectee
destination
state

Input-
specified
effect link

pair

(consisting of
one state-
specified input
link and one
state-
unspecified
output link)

The process
changes the
object from a
specified input
state to any
output state.

Testing changes Sample from awaiting
test.

affectee
source
state

affecting
process

affecting
process

affectee

Output-
specified
effect link

pair

(consisting of
one state-
unspecified
input link and
one state-
specified output
link)

The process
changes the
object from any
input state to a
specified output
state.

Cleaning & Painting changes Engine
Hood to painted.

affectee
affecting
process

affecting
process

affectee
destination
state

 1038

 1039

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 31

9.4 State-specified enabling links 1040

9.4.1 State-specified agent link 1041

A state-specified agent link shall be an agent link from a specified state of the agent to a process. The agent 1042
in the specified state shall be necessary for process activation and performance. 1043

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from the 1044
specified state of the agent object to the process it enables shall denote a state-specified agent link. 1045

The syntax of a state-specified agent link OPL sentence shall be: Specified-state Agent handles Processing. 1046

NOTE State name labels do not appear with beginning capital letters except when they appear at the beginning of an 1047
OPL sentence. 1048

EXAMPLE A Pilot must be sober in order to qualify as an agent for the Flying process of an Airplane. In OPL: 1049
Sober Pilot handles Flying. 1050

9.4.2 State-specified instrument link 1051

A state-specified instrument link shall be an instrument link from a specified state of the instrument to a 1052
process. The instrument in the specified state shall be necessary for process activation and performance. 1053

Graphically, a line with an empty circle resembling a white lollipop at the terminal end extending from the 1054
specified state of the instrument object to the process it enables shall denote a state-specified instrument link. 1055

The syntax of a state-specified instrument link OPL sentence shall be: Processing requires specified-state 1056
Instrument. 1057

EXAMPLE The OPD in Figure 12 depicts the difference between basic and state-specified instrument links. On the 1058
left, the object Moving Truck is the instrument for Moving, meaning that the state of this object does not matter, while on 1059
the right, the qualifying state serviced of Moving Truck is an instrument of Moving, meaning that if and only if Moving 1060
Truck is serviced may Moving take place. 1061

ISO/PDPAS 19450

32 © ISO 2014 – All rights reserved

 1062

Moving Truck is physical. Moving Truck is physical. 1063
Moving Truck can be worn out or serviced. Moving Truck can be worn out or serviced. 1064
Servicing is environmental and physical. Servicing is environmental and physical. 1065
Servicing changes Moving Truck from worn Servicing changes Moving Truck from worn 1066

out to serviced. out to serviced. 1067
Apartment Content Location is physical. Apartment Content Location is physical. 1068
Apartment Content Location can be Apartment Content Location can be 1069

old apartment or new apartment. old apartment or new apartment. 1070
Moving is physical. Moving is physical. 1071
Moving requires Moving Truck. Moving requires serviced Moving Truck. 1072
Moving changes Apartment Content Location Moving changes Apartment Content Location 1073

from old apartment to new apartment. from old apartment to new apartment. 1074

Figure 12 — Instrument link on left vs. state-specified instrument link on right 1075

9.4.3 State-specified enabling links summary 1076

Table 4 — State specified enabling links summary 1077

Name Semantics Sample OPD & OPL Source Destination

State-
specified
agent link

The human
agent enables
the process
provided she is
at the specified
state.

Healthy Miner handles Copper
Mining.

agent
state

enabled
process

State-
specified

instrument
link

The process
requires the
instrument at
the specified
state. Copper Mining requires operational

Drill.

instrument
state

enabled
process

 1078

9.5 Control links 1079

9.5.1 Kinds of control links 1080

As part of the Event-Condition-Action paradigm (see 8.2.1) underlying OPM's operational semantics, an event 1081
link, a condition link, and an exception link shall express an event, a condition, and a time exception 1082

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 33

respectively. These three link kinds shall be control links. Control links shall occur either between an object 1083
and a process or between two processes. 1084

An event link shall specify a source event and a destination process to activate upon event occurrence. The 1085
event occurrence causes an evaluation of the process' precondition for satisfaction. 1086

Satisfying the precondition allows process performance to proceed and the process becomes active. If the 1087
process precondition is not satisfied, then process performance shall not occur. Regardless of whether the 1088
evaluation is successful or not, the event shall be lost. 1089

If the process precondition is not satisfied, process activation shall not occur until another event activates the 1090
process. Control links determine if the process waits for another activating event or if the flow of execution 1091
control bypasses the process. 1092

NOTE 1 Subsequent events may come from other sources to initiate precondition evaluation. 1093

A condition link shall be a procedural link between a source object or object state and a destination process. A 1094
condition link shall provide a bypass mechanism, which enables system execution control to skip, or bypass, 1095
the destination process if its precondition satisfaction evaluation fails. 1096

NOTE 2 Without the condition link bypass mechanism, the failure to satisfy the precondition constrains the process to 1097
wait for satisfaction of the precondition. 1098

For both event links and condition links, each kind of incoming transforming link and enabling link, i.e. a link 1099
from an object or object state to a process, shall have a corresponding kind of event link and condition link. 1100

An exception link shall be a procedural link between a process that for some reason is unable to complete 1101
successfully or takes more or less time to complete than expected, and a process that is to manage the 1102
exception situation. 1103

NOTE 3 Exception links express only failures in time-based performance criteria. Since most exceptions result in 1104
undertime or overtime performance, exception links serve many situations. 1105

Graphically, a control modifier appearing as an annotation next to an incoming transforming link or enabling 1106
link, i.e. a link from an object or an object state to a process, shall denote the corresponding control link. The 1107
symbol "e" annotation, signifying event, shall denote an event link and the symbol "c" annotation, signifying 1108
condition, shall denote a condition link. The control modifier annotation for an exception link is one or two 1109
short bars crossing the link near the exception managing process. 1110

9.5.2 Event links 1111

9.5.2.1 Transforming event links 1112

9.5.2.1.1 Consumption event link 1113

A consumption event link shall be an annotated consumption link between an object and a process, which an 1114
operational instance of the object initiates. Satisfaction of the process precondition and the subsequent 1115
process performance shall consume the instance of the initiating object. 1116

Graphically, an arrow with a closed arrowhead pointing from the object to the process with the small letter "e" 1117
annotation near the arrowhead, signifying event, shall denote the consumption event link. 1118

The syntax of a consumption event link OPL sentence shall be: Object initiates Process, which consumes 1119
Object. 1120

ISO/PDPAS 19450

34 © ISO 2014 – All rights reserved

9.5.2.1.2 Effect event link 1121

An effect event link shall be an annotated portion of an effect link from an object to a process, which an 1122
operational instance of the object initiates. Satisfaction of the process precondition and the subsequent 1123
process performance shall affect the initiating object in some manner. 1124

Graphically, a bidirectional arrow with closed arrowheads at each end between the object and the process 1125
with a small letter "e" annotation near the process end of the arrow, signifying event, shall denote the effect 1126
event link. 1127

The syntax of an effect event link OPL sentence shall be: Object initiates Process, which affects Object. 1128

9.5.2.1.3 Transforming event links summary 1129

Table 5 —Transforming event link summary 1130

Name Semantics Sample OPD & OPL Source Destination

Consumption
event link

The object
initiates the
process, which, if
performed,
consumes the
object.

Food initiates Eating, which
consumes Food.

initiating
consumee

initiated
process, which
consumes the
initiating
consumee

Effect event
link

The object
initiates the
process, which, if
performed,
affects the
object.

Copper initiates Purifying,
which affects Copper.

initiating
affectee

initiated
process, which
affects the
initiating
affectee

NOTE The event link is the link

from the object to the process;
the link from the process to the

object is not an event link.

 1131

9.5.2.2 Enabling event links 1132

9.5.2.2.1 Agent event link 1133

An agent event link shall be an annotated enabling link from an agent object to the process that it initiates and 1134
enables. 1135

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from an agent 1136
object to the process it initiates and enables with a small letter "e" annotation near the process end, signifying 1137
event, shall denote an agent event link. 1138

The syntax of an agent event link OPL sentence shall be: Agent initiates and handles Process. 1139

9.5.2.2.2 Instrument event link 1140

An instrument event link shall be an annotated enabling link from an instrument object to the process that it 1141
initiates and enables. 1142

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 35

Graphically, a line with an empty circle resembling white lollipop at the terminal end extending from the 1143
instrument object to the process it initiates and enables with a small letter "e" annotation near the process end, 1144
signifying event, shall denote an instrument event link. 1145

The syntax of an instrument event link OPL sentence shall be: Instrument initiates Process, which requires 1146
Instrument. 1147

9.5.2.2.3 Enabling event link summary 1148

Table 6 —Enabling event link summary 1149

Name Semantics Sample OPD & OPL Source Destination

Agent
event link

The agent—a
human—both
initiates and
enables the
process. The
agent must exist
throughout the
process duration.

Miner initiates and handles Copper
Mining.

initiating
agent

initiated
process

Instrument
event link

The object
initiates the
process as an
instrument, so it
does not change,
but it must exist
throughout the
process duration.

Drill initiates Copper Mining, which
requires Drill.

initiating
instrument

initiated
process

 1150

9.5.2.3 State-specified transforming event links 1151

9.5.2.3.1 State-specified consumption event link 1152

A state-specified consumption event link shall be an annotated consumption link from a specified state of an 1153
object to a process, which an operational instance of the object initiates. Satisfaction of the process 1154
precondition, including the initiating object at the specified state, and the subsequent process performance 1155
shall consume the initiating object. 1156

Graphically, an arrow with a closed arrowhead pointing from the specified state of the object to the process 1157
with the small letter "e" annotation near the arrowhead, signifying event, shall denote the state-specified 1158
consumption event link. 1159

The syntax of a state-specified consumption event link OPL sentence shall be: Specified-state Object 1160
initiates Process, which consumes Object. 1161

9.5.2.3.2 Input-output-specified effect event link 1162

An input-output-specified effect event link shall be an annotated input-output-specified effect link that initiates 1163
the affecting process when an operational instance of the object enters the specified input source state. 1164

Graphically, the input-output-specified effect link with a small letter "e" annotation near the arrowhead end of 1165
the input link, signifying event, shall denote the input-output-specified effect event link. 1166

The syntax of an input-output-specified effect event link OPL sentence shall be: Input-state Object initiates 1167
Process, which changes Object from input-state to output-state. 1168

ISO/PDPAS 19450

36 © ISO 2014 – All rights reserved

9.5.2.3.3 Input-specified effect event link 1169

An input-specified effect event link shall be an annotated input-specified effect link that initiates the affecting 1170
process when an operational instance of the object enters the specified input source state. 1171

Graphically, the input-specified effect link with a small letter "e" annotation at the arrowhead end of the input 1172
link, signifying event, shall denote the input-specified effect event link. 1173

The syntax of an input-specified effect event link OPL sentence shall be: Input-state Object initiates Process, 1174
which changes Object from input-state. 1175

9.5.2.3.4 Output-specified effect event link 1176

An output-specified effect event link shall be an annotated output-specified effect link that initiates the 1177
affecting process when an operational instance of the object comes into existence. 1178

Graphically, the output-specified effect link with a small letter "e" annotation at the arrowhead end of the input 1179
link, signifying event, shall denote the output-specified effect event link. 1180

The syntax of an output-specified effect event link OPL sentence shall be: Object in any state initiates 1181
Process, which changes Object to destination-state. 1182

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 37

9.5.2.3.5 State-specified transforming event link summary 1183

Table 7 — State-specified transforming event link summary 1184

Name Semantics Sample OPD & OPL Source Destination

State-
specified

consumption
event link

The object in
the specified
state both
initiates the
process and is
consumed by it.

Edible Food initiates Eating, which
consumes Food.

consumee
state

initiated
process

Input-output
specified
event link

pair

The object in
the specified
state both
initiates the
process and is
transformed by
it to the output
state.

Raw Copper initiates Purifying, which
changes Copper from raw to pure.

affectee
source
state

initiates
process

initiates
process

affectee
destination
state

Input-
specified
effect link

pair

The object in
the specified
state both
initiates the
process and is
transformed by
it to any one of
its states.

Awaiting test Sample initiates Testing,
which changes Sample from awaiting

test.

affectee
source
state

initiated
process

initiates
process

affectee

Output-
specified
event link

pair

The object (in
any one of its
states) both
initiates the
process and is
transformed by
it to the output
state. Engine Hood initiates Cleaning &

Painting, which changes Engine Hood
to painted.

affectee
initiates
process

initiates
process

affectee
destination
state

 1185

9.5.2.4 State-specified enabling event links 1186

9.5.2.4.1 State-specified agent event link 1187

A state-specified agent event link shall be an annotated state-specified agent link that initiates the process 1188
when an operational instance of the agent enters the specified state. 1189

ISO/PDPAS 19450

38 © ISO 2014 – All rights reserved

Graphically, the state-specified agent link with a small letter "e" annotation near the process end of the link, 1190
signifying event, shall denote the state-specified agent event link. 1191

The syntax of a state-specified agent event link OPL sentence shall be: Specified-state Agent initiates and 1192
handles Processing. 1193

9.5.2.4.2 State-specified instrument event link 1194

A state-specified instrument event link shall be an annotated state-specified instrument link that initiates the 1195
process when an operational instance of the instrument enters the specified state. 1196

Graphically, the state-specified instrument link with a small letter "e" annotation near the process end of the 1197
link, signifying event, shall denote the state-specified instrument event link. 1198

The syntax of a state-specified instrument event link OPL sentence shall be: Specified-state Instrument 1199
initiates Processing, which requires specified-state Instrument." 1200

9.5.2.4.3 State-specified enabling event link summary 1201

Table 8 — State-specified enabling event link summary 1202

Name Semantics Sample OPD & OPL Source Destination

State-
specified

agent event
link

The human
agent in the
specified state
both initiates the
process and
acts as its
agent.

The agent must
be at the
specified state
throughout the
process
duration.

Healthy Miner initiates and
handles Copper Mining.

agent state
initiated
process

State-
specified

instrument
event link

The object at
the specified
state both
initiates the
process and is
instrument for its
performance.

The instrument
must be at the
specified state
throughout the
process
duration.

Operational Drill initiates
Copper Mining, which

requires operational Drill.

instrument
state

initiated
process

 1203

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 39

9.5.2.5 Invocation links 1204

9.5.2.5.1 Process invocation and invocation link 1205

Process invocation shall be an event by which a process initiates a process. An invocation link shall be a link 1206
from a source process to the destination process that it invokes (initiates), signifying that when the source 1207
process completes, it immediately initiates the destination process at the other end of the invocation link. 1208

NOTE 1 A normal or expected flow of execution control does not invoke a new process if the prior process does not 1209
complete successfully. It is up to the modeller to take care of any process that aborts. 1210

NOTE 2 Since an OPM process performs a transformation, the invocation link semantically implies the creation of an 1211
interim object by the invoking source process that the subsequent invoked destination process immediately consumes. In 1212
an OPM model, an invocation link may replace a transient, short-lived physical or informatical object (such as Record ID 1213
in a query), that a source process creates to initiate the destination process, which immediately consumes the transient 1214
object. 1215

Graphically, a lightening symbol jagged line from the invoking source process to the invoked destination 1216
process ending with a closed arrowhead at the invoked process shall denote an invocation link. 1217

The syntax of an invocation link OPL sentence shall be: Invoking-process invokes invoked-process. 1218

9.5.2.5.2 Self-invocation link 1219

Self-invocation shall be invocation of a process by itself, such that upon process completion, the process 1220
immediately invokes itself. The self-invocation link shall specify self-invocation. 1221

Graphically, a pair of invocation links, originating at the process and joining head to tail before ending back at 1222
the original process shall denote the self-invocation link. 1223

The syntax of a self-invocation link OPL sentence shall be: Invoking-process invokes itself. 1224

9.5.2.5.3 Invocation link summary 1225

Table 9 — Invocation link summary 1226

Name Semantics Sample OPD & OPL Source Destination

Invocation
link

As soon as
the invoking
process ends,
it invokes the
process
pointed to by
the invocation
link. Product Finishing invokes Product

Shipping.

Initiating
process

Another
initiated
process

Self-
invocation
link

Upon process
completion, it
immediately
invokes itself.

Recurrent Processing invokes itself.

Initiating
process

The same
process

 1227

ISO/PDPAS 19450

40 © ISO 2014 – All rights reserved

9.5.3 Condition links 1228

9.5.3.1 Basic Condition transforming links 1229

9.5.3.1.1 Condition consumption link 1230

A condition consumption link shall be an annotated consumption link from a consumee to a process. If a 1231
consumee operational instance exists when an event initiates the process, then the presence of that 1232
consumee operational instance satisfies the process precondition with respect to that object. If evaluation of 1233
the entire preprocess object set satisfies the precondition, the process starts and consumes that consumee 1234
instance. However, if a consumee operational instance does not exist when an event initiates the process, 1235
then the process precondition evaluation fails and the flow of execution control bypasses, or 'skips', the 1236
process without process performance. 1237

Graphically, an arrow with a closed arrowhead pointing from the consumee to the process with the small letter 1238
"c" annotation near the arrowhead, signifying condition, shall denote a condition consumption link. 1239
 1240
The syntax of the condition consumption link OPL sentence shall be: Process occurs if Object exists, in 1241
which case Object is consumed, otherwise Process is skipped. 1242
 1243
An alternate syntax of the condition consumption link OPL sentence shall be: If Object exists then Process 1244
occurs and consumes Object, otherwise bypass Process. 1245
 1246
 1247

9.5.3.1.2 Condition effect link 1248

A condition effect link shall be an annotated effect link from an affectee to a process. If an affectee object 1249
operational instance exists when an event initiates the process, then the presence of that affectee instance 1250
satisfies the process precondition with respect to that object. If evaluation of the entire preprocess object set 1251
satisfies the precondition, the process starts and affects that affectee instance. However, if an affectee 1252
operational instance does not exist when an event initiates the process, then the process precondition 1253
evaluation fails and the flow of execution control bypasses, or 'skips' the process without process performance. 1254

Graphically, a bidirectional arrow with two closed arrowheads, one pointing in each direction between the 1255
affectee and the affecting process, with the small letter "c" annotation near the process end of the arrow, 1256
signifying condition, shall denote a condition effect link. 1257

The syntax of the condition effect link OPL sentence shall be: Process occurs if Object exists, in which case 1258
Process affects Object, otherwise Process is skipped. 1259
 1260
An alternate syntax of the condition effect link OPL sentence shall be: If Object exists then Process occurs 1261
and affects Object, otherwise bypass Process. 1262
 1263

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 41

9.5.3.1.3 Condition transforming link summary 1264

Table 10 —Condition transforming link summary 1265

Name Semantics Sample OPD & OPL Source Destination

Condition
consumptio

n link

If an object
operational instance
exists and the rest of
the process
precondition is
satisfied, then the
process performs
and consumes the
object instance,
otherwise execution
control advances to
initiate the next
process.

Process occurs if Object
exists, in which case

Process consumes Object,
otherwise Process is

skipped.

Conditioning
object

Conditioned
process

Condition
effect link

If an object
operational instance
exists and the rest of
the process
precondition is
satisfied, then the
process performs
and affects the object
instance, otherwise
execution control
advances to initiate
the next process.

Process occurs if Object
exists, in which case

Process affects Object,
otherwise Process is

skipped.

Conditioning
object

Conditioned
process

 1266

9.5.3.2 Basic condition enabling links 1267

9.5.3.2.1 Condition agent link 1268

A condition agent link shall be an annotated agent link from an agent to a process. If an agent operational 1269
instance exists when an event initiates the process, then the presence of that agent instance satisfies the 1270
process precondition with respect to that object. If evaluation of the entire preprocess object set satisfies the 1271
precondition, the process starts and that agent handles its performance. However, if an agent operational 1272
instance does not exist when an event initiates the process, then the process precondition evaluation fails and 1273
the flow of execution control bypasses, or 'skips' the process without process performance. 1274

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from an agent 1275
object to the process it enables, with the small letter "c" annotation near the process end, signifying condition, 1276
shall denote a condition agent link. 1277
 1278
The syntax of the condition agent link OPL sentence shall be: Agent handles Process if Agent exists, else 1279
Process is skipped. 1280
 1281
An alternate syntax for the condition agent link OPL sentence shall be: If Agent exists then Agent handles 1282
Process, otherwise bypass Process. 1283

9.5.3.2.2 Condition instrument link 1284

A condition instrument link shall be an annotated instrument link from an instrument to a process. If an 1285
instrument operational instance exists when an event initiates the process, then the presence of that 1286
instrument instance satisfies the process precondition with respect to that object. If evaluation of the entire 1287
preprocess object set satisfies the precondition, the process starts. However, if an instrument operational 1288

ISO/PDPAS 19450

42 © ISO 2014 – All rights reserved

instance does not exist when an event initiates the process, then the process precondition evaluation fails and 1289
the flow of execution control bypasses, or 'skips' the process without process performance. 1290

Graphically, a line with an empty circle resembling a white lollipop at the terminal end, extending from an 1291
instrument object to the process it enables, with the small letter "c" annotation near the process end, signifying 1292
condition, shall denote a condition instrument link. 1293
 1294
The syntax of the condition instrument link OPL sentence shall be: Process occurs if Instrument exists, else 1295
Process is skipped. 1296
 1297
An Alternate syntax for the condition instrument link OPL sentence shall be: If Instrument exists then Process 1298
occurs, otherwise bypass Process. 1299
 1300
EXAMPLE Figure 13 is an OPD with a condition instrument link from Nearby Mobile Device to Cellular Network 1301
Signal Amplifying, which occurs only if an environmental object Nearby Mobile Device exists and is otherwise skipped, 1302

as there is no point in amplifying if no device is nearby. 1303
 1304

 1305
Cellular Network Signal Amplifying occurs if Nearby Mobile Device exists, 1306

 otherwise Cellular Network Signal Amplifying is skipped. 1307

Figure 13 — Condition instrument link (with partial OPL) 1308

 1309

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 43

9.5.3.2.3 Basic condition enabling link summary 1310

Table 11 — Condition enabling link summary 1311

Name Semantics Sample OPD & OPL Source Destination

Agent
condition

link

The agent
enables the
process if the
agent is
present,
otherwise the
process is
skipped.

Engineer handles Part
Designing if Engineer is
present, otherwise Part
Designing is skipped.

Conditioning
agent

Conditioned
process

Instrument
condition

link

The instrument
enables the
process if it
exists,
otherwise the
process is
skipped. Precise Measuring occurs

if LASER Meter exists,
otherwise Precise

Measuring is skipped.

Conditioning
instrument

Conditioned
process

 1312

9.5.3.3 Condition state-specified transforming links 1313

9.5.3.3.1 Condition state-specified consumption link 1314

A condition state-specified consumption link shall be an annotated condition consumption link from a specified 1315
state of a consumee to a process. If an operational instance of the consumee at the specified state exists 1316
when an event initiates the process, then the presence of that consumee instance satisfies the process 1317
precondition with respect to that object. If evaluation of the entire preprocess object set satisfies the 1318
precondition, the process starts and consumes that consumee instance. However, if an operational instance 1319
of a consumee in the specified state does not exist when an event initiates the process, then the process 1320
precondition evaluation fails and the flow of execution control bypasses, or 'skips', the process without process 1321
performance. 1322

Graphically, an arrow with a closed arrowhead pointing from the specified state of the consumee to the 1323
process with the small letter "c" annotation near the arrowhead, signifying condition, shall denote a condition 1324
state-specified consumption link. 1325
 1326
The syntax of the condition state-specified consumption link OPL sentence shall be: Process occurs if Object 1327
is specified-state, in which case Object is consumed, otherwise Process is skipped. 1328
 1329
An alternate syntax for the condition state-specified consumption link OPL sentence shall be: If specified-1330
state Object exists then Process occurs and consumes Object, otherwise bypass Process. 1331
 1332
 1333

ISO/PDPAS 19450

44 © ISO 2014 – All rights reserved

9.5.3.3.2 Condition input-output-specified effect link 1334

A condition input-output-specified effect link shall be an annotated input-output-specified effect link from a 1335
source input state to a process. If an operational instance of the affectee at the specified state exists when an 1336
event initiates the process, then the presence of that affectee instance satisfies the process precondition with 1337
respect to that object. If evaluation of the entire preprocess object set satisfies the precondition, the process 1338
starts and affects that object operational instance by changing the state of the instance from the specified 1339
input state to the specified output state. However, if an operational instance of an affectee at the specified 1340
state does not exist when an event initiates the process, then the process precondition evaluation fails and the 1341
flow of execution control bypasses, or 'skips', the process without process performance. 1342

Graphically, the condition input-output-specified effect link with the small letter "c" annotation near the 1343
arrowhead of the input link, signifying condition, shall denote a condition input-output-specified effect link. 1344
 1345
The syntax of the condition input-output-specified effect link OPL sentence shall be: Process occurs if Object 1346
is input-state, in which case Process changes Object from input-state to output-state, otherwise Process 1347
is skipped. 1348
 1349
An alternate syntax for the condition input-output-specified effect link OPL sentence shall be: If input-state 1350
Object then Process changes Object from input-state to output-state, otherwise bypass Process. 1351
 1352
 1353

9.5.3.3.3 Condition input-specified effect link 1354

A condition input-specified effect link shall be an annotated input-specified effect link from a source input state 1355
to a process. If an operational instance of the affectee at the specified state exists when an event initiates the 1356
process, then the presence of that affectee instance satisfies the process precondition with respect to that 1357
object. If evaluation of the entire preprocess object set satisfies the precondition, the process starts and 1358
affects that object instance by changing the state of the instance from the specified input state to a destination 1359
state. The destination state shall be either its default state or, if the object does not have a default state, the 1360
state probability distribution of the object shall determine the output destination state of that object (see 12.7). 1361
However, if an operational instance of an affectee at the specified state does not exist when an event initiates 1362
the process, then the process precondition evaluation fails and the flow of execution control bypasses, or 1363
'skips', the process without process performance. 1364

Graphically, the condition input-specified effect link with the small letter "c" annotation near the arrowhead of 1365
the input link, signifying condition, shall denote the condition input-specified effect link. 1366

The syntax of a condition input-specified effect link OPL sentence shall be: Process occurs if Object is input-1367
state, in which case Process changes Object from input-state, otherwise Process is skipped. 1368

An alternate syntax for a condition input-specified effect link OPL sentence shall be: if input-state Object then 1369
Process changes Object from input-state, otherwise bypass Process. 1370

9.5.3.3.4 Condition output-specified effect link 1371

A condition output-specified effect link shall be an annotated output-specified effect link from a source object 1372
to a process. If an operational instance of the affectee exists when an event initiates the process, then the 1373
presence of that affectee instance satisfies the process precondition with respect to that object. If evaluation of 1374
the entire preprocess object set satisfies the precondition, the process starts and affects that object instance 1375
by changing the state of the instance to the specified output-state. However, if an operational instance of an 1376
affectee does not exist when an event initiates the process, then the process precondition evaluation fails and 1377
the flow of execution control bypasses, or 'skips', the process without process performance. 1378

Graphically, the condition output-specified effect link with the small letter "c" annotation near the arrowhead of 1379
the input link, signifying condition, shall denote a condition output-specified effect link. 1380

The syntax of the condition output-specified effect OPL sentence shall be: Process occurs if Object exists, in 1381
which case Process changes Object to output-state, otherwise Process is skipped. 1382

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 45

An alternate syntax for the condition output-specified effect OPL sentence shall be: if Object exists then 1383
Process changes Object to output-state, otherwise bypass Process. 1384

 1385

ISO/PDPAS 19450

46 © ISO 2014 – All rights reserved

9.5.3.3.5 Condition state-specified transforming link summary 1386

Table 12 — Condition state-specified transforming link summary 1387

Name Semantics Sample OPD & OPL Source Destination

Condition
state-

specified
consumption

link

The process
performs if the
object is in the
state from which
the link
originates,
otherwise the
process is
skipped.

Testing occurs if Raw Material
Sample is pre-approved, in

which case Raw Material Sample
is consumed, otherwise Testing

is skipped.

conditioning
specified

state of the
object

conditioned
process

Condition
input-output-

specified
effect link

The process
performs if the
object is in the
input state (from
which the link
originates) and
changes the
object from its
input state to its
output state,
otherwise the
process is
skipped.

Testing occurs if Raw Material is
pre-tested, in which case Testing
changes Raw Material from pre-

tested to tested, otherwise
Testing is skipped.

conditioning
specified
input state of
the object

conditioned
process

Condition
input-

specified
effect link

The process
performs if the
object is in the
input state (from
which the link
originates) and
changes the
object from its
input state to any
one of its states,
otherwise the
process is
skipped.

Delivery Attempting occurs if
Message is created, in which

case Delivery Attempting
changes Message from created,
otherwise Delivery Attempting is

skipped.

conditioning
specified
input state of
the object

conditioned
process

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 47

Condition
output-

specified
effect link

The process
performs if the
object is in the
input state (from
which the link
originates) and
changes the
object from its
input state to any
one of its states,
otherwise the
process is
skipped.

Stress Testing occurs if
Suspicious Component exists,
in which case Stress Testing

changes Suspicious Component
to stress-tested, otherwise
Stress Testing is skipped.

conditioning
object

conditioned
process

 1388

9.5.3.4 Condition state-specified enabling links 1389

9.5.3.4.1 Condition state-specified agent link 1390

A condition state-specified agent link shall be an annotated state-specified agent link from a specified state of 1391
an agent to a process. If an operational instance of the agent at the specified state exists when an event 1392
initiates the process, then the presence of that agent instance satisfies the process precondition with respect 1393
to that object. If evaluation of the entire preprocess object set satisfies the precondition, the process starts and 1394
that agent handles operation. However, if an operational instance of an agent in the specified state does not 1395
exist when an event initiates the process, then the process precondition evaluation fails and the flow of 1396
execution control bypasses, or 'skips', the process without process performance. 1397

Graphically, the state-specified agent link with a small letter "c" annotation near the process end, signifying 1398
condition, shall denote a condition state-specified agent link. 1399
 1400
The syntax of the condition state-specified agent link OPL sentence shall be: Agent handles Process if 1401
Agent is specified-state, else Process is skipped. 1402
 1403
An alternate syntax for the condition state-specified agent link OPL sentence shall be: If specified-state 1404
Agent exists then Agent handles Process, otherwise bypass Process. 1405
 1406
 1407

9.5.3.4.2 Condition state-specified instrument link 1408

A condition state-specified instrument link shall be an annotated state-specified instrument link from a 1409
specified state of an instrument to a process. If an operational instance of the instrument at the specified state 1410
exists when an event initiates the process, then the presence of that instrument instance satisfies the process 1411
precondition with respect to that object. If evaluation of the entire preprocess object set satisfies the 1412
precondition, the process starts. However, if an operational instance of an instrument in the specified state 1413
does not exist when an event initiates the process, then the process precondition evaluation fails and the flow 1414
of execution control bypasses, or 'skips', the process without process performs. 1415

Graphically, the state-specified instrument link with a small letter "c" annotation near the process end, 1416
signifying condition, shall denote a condition state-specified instrument link. 1417
 1418
The syntax of the condition state-specified instrument link OPL sentence shall be: "Process occurs if 1419
Instrument is specified-state, otherwise Process is skipped. 1420
 1421
An alternate syntax for the condition state-specified instrument link OPL sentence shall be: If specified-state 1422
Instrument then Process occurs, otherwise bypass Process. 1423
 1424

ISO/PDPAS 19450

48 © ISO 2014 – All rights reserved

9.5.3.4.3 Condition state-specified enabling link summary 1425

Table 13 — Condition state-specified enabling link summary 1426

Name Semantics Sample OPD & OPL Source Destination

State-
specified

agent
condition

link

The agent
enables the
process if the
agent is in the
specified state,
otherwise the
process is
skipped. Engineer handles Critical Part

Designing if Engineer is safety
design authorized, otherwise

Critical Part Designing is
skipped.

conditioning
specified
state of
agent

conditioned
process

State-
specified
instrument
condition
link

The instrument
enables the
process if it is
in the specified
state,
otherwise the
process is
skipped. Ultra-Precision Measuring

occurs if LASER Meter is
periodically calibrated,

otherwise Precise Measuring is
skipped.

conditioning
specified
state of
instrument

conditioned
process

 1427

9.5.4 Exception links 1428

9.5.4.1 Minimal, Expected, and Maximal Process Duration and Duration Distribution 1429

A process may have a Duration attribute with a value that expresses units of time. Duration may specialize 1430
into Minimal Duration, Expected Duration, and Maximal Duration. 1431

Minimal Duration and Maximal Duration should designate the minimum and maximum allowable time units 1432
for process completion. Expected Duration of a process should be the statistical mean of the duration of that 1433
process. 1434

Duration may have an optional Duration Distribution property with a value identifying the name and 1435
parameters for a probability distribution function associated with the process duration. At run-time, the value of 1436
Duration is determined separately for each process instance (i.e. for each individual process occurrence) by 1437
sampling from the process Duration Distribution. 1438

NOTE See Annex C for process duration and system time run-time discussion and examples. 1439

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 49

9.5.4.2 Overtime exception link 1440

The overtime exception link shall connect the source process with an overtime handling destination process to 1441
specify that if at runtime, performance of the source process instance exceeds its Maximal Duration value, 1442
then an event initiates the destination process. 1443

Graphically, a single short bar, oblique to the line connecting the source and destination processes and next 1444
to the destination process, shall denote the overtime exception link. 1445

Given that, max-duration is the value of Maximal Duration, and time-unit is an allowable time measurement 1446
unit, the syntax of the overtime exception link shall be: Overtime Handling Destination Process occurs if 1447
duration of Source Process exceeds max-duration time-units. 1448

9.5.4.3 Undertime exception link 1449

The undertime exception link shall connect the source process with an undertime handling destination process 1450
to specify that if at runtime, performance of the source process instance takes less than its Minimal Duration 1451
value, then an event initiates the destination process. 1452

Graphically, two parallel short bars, oblique to the line connecting the source and destination processes and 1453
next to the destination process, shall denote the undertime exception link. 1454

Given that, min-duration is the value of Minimal Duration, and time-unit is an allowable time measurement 1455
unit, the syntax of the undertime exception link shall be: Undertime Handling Destination Process occurs if 1456
duration of Source Process falls short of min-duration time-units. 1457

NOTE Similar to the invocation link, the two time exception links are procedural links that connect two processes 1458
directly, unlike most procedural links, which connect an object and a process. There is, in fact, an interim object Overtime 1459
Exception Message or an Undertime Exception Message created by the OPM's process execution mechanism realizing 1460
the process failed to end by the maximal allotted time or ended prematurely, falling short of the minimal allotted time, 1461
respectively. Since the OPM operational mechanism creates and immediately consumes these objects, their depiction is 1462
not necessary in the model. 1463

 1464

10 Structural links 1465

10.1 Kinds of structural links 1466

Structural links specify static, time-independent, long-lasting relations in the system. A structural link shall 1467
connect two or more objects or two or more processes, but not an object and a process, except in the case of 1468
an exhibition-characterization link (see 10.3.3). The two kinds of structural links shall be tagged structural links 1469
and fundamental structural links of aggregation-participation, exhibition-characterization, generalization-1470
specialization, and classification-instantiation. 1471

10.2 Tagged structural link 1472

10.2.1 Unidirectional tagged structural link 1473

A unidirectional tagged structural link shall have a user-defined semantics regarding the nature of the relation 1474
from one thing to the other thing. A meaningful tag, in the form of a textual phrase, shall express the nature of 1475
the structural relation between the connecting objects or connecting processes. The tag should convey that 1476
meaning when placed in the OPL sentence. 1477

Graphically, an arrow with an open arrowhead and a tag annotation near the shaft shall denote a 1478
unidirectional tagged structural link. 1479

The syntax of the unidirectional tagged structural link OPL sentence shall be: Source-thing tag Destination-1480
thing. 1481

ISO/PDPAS 19450

50 © ISO 2014 – All rights reserved

NOTE Since the tag is a label added to the model by the modeller, in the OPL sentence the tag phrase appears in 1482
bold to distinguish it from other words implicit in the syntactic construction. 1483

10.2.2 Unidirectional null-tagged structural link 1484

A unidirectional null-tagged structural link shall be a unidirectional tagged structural link with no tag annotation, 1485
signifying the use of the default unidirectional tag. The default tag shall be "relates to". 1486

The syntax of the unidirectional null-tagged structural link OPL sentence shall be: Source-thing relates to 1487
Destination-thing. 1488

NOTE The modeller should have the option of setting the default unidirectional tag, which does not appear in bold 1489
letters, for a specific system or a set of systems. 1490

10.2.3 Bidirectional tagged structural link 1491

Because relations between things are bidirectional, every tagged structural link has a corresponding tagged 1492
structural link in the opposite direction. When the tags in both directions are meaningful and not just the 1493
inverse of each other, they may be annotated by two tags on either side of a single bidirectional tagged 1494
structural link. 1495

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link shall denote a 1496
bidirectional tagged structural link. Each tag shall align on the side of the arrow with the harpoon edge sticking 1497
out of the arrowhead, unambiguously determining the direction in which each relation applies. 1498

The syntax of the resulting tagged structural link shall be two separate unidirectional tagged structural link 1499
OPL sentences, one for each direction. 1500

EXAMPLE 1501

 1502

Airport serves City. 1503
Highway surrounds City. 1504
Highway passes through Underwater Tunnel. 1505
Underwater Tunnel enables traffic flow in Highway. 1506

Figure 14 — Two kinds of tagged structural links 1507

10.2.4 Reciprocal tagged structural link 1508

A reciprocal tagged structural link shall be a bidirectional tagged structural link with only one tag or no tag. In 1509
either case, reciprocity shall indicate that the tag of a bidirectional structural link has the same semantics for 1510
each direction of the relation. When no tag appears, the default tag shall be "are related". 1511

The syntax of the reciprocal tagged structural link with only one tag shall be: Source-thing and Destination-1512
thing are reciprocity-tag. 1513

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 51

The syntax of the reciprocal tagged structural link with no tag shall be: Source-thing and Destination-thing 1514
are related. 1515

EXAMPLE In Figure 15, on the right is the reciprocal structure link equivalent to the bidirectional tagged structure link 1516
on the left, which has the same tag in each direction. 1517

 1518

Engine is attached to Gearbox. Engine and Gearbox are attached. 1519
Gearbox is attached to Engine. 1520

Figure 15 — Bidirectional (left) and its equivalent reciprocal tagged structural link (right) 1521

NOTE As shown in Figure 15, a change in verb or noun form from that of the bidirectional tagged structural link is 1522
usually necessary to accommodate the reciprocal tagged structural link syntax. 1523

10.3 Fundamental structural relations 1524

10.3.1 Kinds of fundamental structural relations 1525

The fundamental structural relations are the most prevalent structural relations among OPM things and are of 1526
particular significance for specifying and understanding systems. Each of the fundamental relations shall 1527
elaborate or refine one source thing, the refineable, into a collection of one or more destination things, the 1528
refinees. 1529

The fundamental structural relations shall be: 1530

 Aggregation-participation, which designates the relation between a whole and its parts; 1531

 Exhibition-characterization, which designates the relation between an exhibitor, a thing exhibiting one or 1532
more features (attributes and/or operations), and the things that characterize the exhibitor; 1533

 Generalization-specialization, which designates the relation between a general thing and its 1534
specializations; and 1535

 Classification-instantiation, which designates the relation between a class of things and a refinee instance 1536
of that class. 1537

Aggregation, exhibition, generalization, and classification shall be the refinement relation identifiers, i.e., the 1538
identifiers associated with the relation as seen from the perspective of the refineable. Participation, 1539
characterization, specialization, and instantiation shall be the corresponding complementary relation identifiers, 1540
i.e. the relation identifiers as seen from the perspective of their refinees. 1541

With the exception of exhibition-characterization, the refinee destination things shall all have the same 1542
Perseverance value as the refineable source thing, i.e. either all are objects with static Perseverance or all are 1543
processes with dynamic Perseverance. 1544

ISO/PDPAS 19450

52 © ISO 2014 – All rights reserved

Folding the refines shall be the hiding of those refines of a refineable, and unfolding the refineable shall be the 1545
expressing of the refinees of that refineable (see 14.2.1.2). 1546

Because the fundamental structural relations are bidirectional, the associated OPL paragraph could provide 1547
sentences for each direction. However, since one of these sentences is always the consequence of the other, 1548
the OPL expression of a fundamental structural relation shall be limited to one of the two possible sentences. 1549
The presentation of each kind of fundamental structural relation includes the specification of the default OPL 1550
sentence for only one of the two possible sentences. Table 14 summarizes these default sentences. 1551

The collection of refinees modelled for some refineable in some OPD may be complete or incomplete, i.e. the 1552
graphical figure explicitly depicts, and the corresponding text explicitly expresses, only those things relevant to 1553
the OPD in which the structural link appears. 1554

10.3.2 Aggregation-participation relation link 1555

The fundamental structural relation aggregation-participation shall mean that a refineable, the whole, 1556
aggregates one or more refinees, the parts. 1557

Graphically, a black solid (filled in) triangle with its apex connecting by a line to the whole and the parts 1558
connecting by lines to the opposite horizontal base shall denote the aggregation-participation relation link. 1559

The syntax of the aggregation-participation relation link shall be: Whole-thing consists of Part-thing1, Part-1560
thing2, …, and Part-thingn. 1561

EXAMPLE 1 1562

 1563

Resource Description Framework Statement consists of Subject, Predicate, and Object. 1564

Figure 16 — Aggregation-participation relation link 1565

When the representation of the collection of parts at the particular extent of detail is incomplete, the 1566
aggregation-participation relation link shall signify the incomplete representation with an annotation. 1567

Graphically, a short horizontal bar crossing the vertical line below the black triangle shall denote the 1568
incomplete aggregation-participation relation link. 1569

The syntax of the aggregation-participation relation link indicating a partial collection of parts where at least 1570
one part is missing shall be: Whole-thing consists of Part-thing1, Part-thing2,… Part-thingk, and at least 1571
one other part. 1572

EXAMPLE 2 In Figure 17, Object from Figure 16 is missing. The short horizontal bar crossing the vertical line below 1573
the black triangle denotes the missing thing. 1574

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 53

 1575

Resource Description Framework Statement consists of Subject, Predicate, and at least one other part. 1576

Figure 17 — Aggregation-participation relation link example with partial refinee set 1577

EXAMPLE 3 On the left in Figure 18, the Consuming process consumes the Whole along with its Part B and Part D, 1578
while Part A and Part C remain as separate objects. On the right in Figure 18, the terse version using partial aggregation 1579
shows the Consuming process consumes the Whole and only Part B and Part D, while other parts of the Whole remain as 1580
distinct objects. 1581

 1582

Figure 18 - Partial aggregation consumption 1583

NOTE A tool should keep track of the set of refinees for each refineable and adjust the symbol and corresponding 1584
OPL sentences (specified below for each fundamental structural relation link) as the modeller changes the collection of 1585
refinees. 1586

10.3.3 Exhibition-characterization link 1587

10.3.3.1 Exhibition-characterization relation link expression 1588

The fundamental structural relation exhibition-characterization shall mean that a refineable, the exhibitor, 1589
exhibits one or more features that characterize the exhibitor, the refinees. The features shall characterize the 1590
exhibitor. 1591

A feature shall be a thing. An attribute shall be a feature that is an object. An operation shall be a feature that 1592
is a process. A process exhibitor and an object exhibitor shall each have at least one feature and may have 1593
both attributes, their object features, and operations, their process features. 1594

The exhibition-characterization relation can combine the four exhibitor-feature combinations of object and 1595
process (see Figure 19). 1596

ISO/PDPAS 19450

54 © ISO 2014 – All rights reserved

 1597

Object Exhibitor exhibits Attribute. Object Exhibitor exhibits Operation. 1598
Process Exhibitor exhibits Attribute. Process Exhibitor exhibits Operation. 1599

Figure 19 — The four exhibition-characterization feature combinations 1600

Graphically, a smaller black triangle inside a larger empty triangle with that larger triangle's apex connecting 1601
by a line to the exhibitor and the features connecting to the opposite (horizontal) base shall denote the 1602
exhibition-characterization relation link (see Figure 19). 1603

The syntax of the exhibition-characterization relation link for an object exhibitor with a complete collection of n 1604
attributes and m operations shall be: Object-exhibitor exhibits Attribute1, Attribute2, … , and Attributen, as 1605
well as Operation1, Operator2, … , Operatorm. 1606

The syntax of the exhibition-characterization relation link for a process exhibitor with a complete collection of n 1607
operation features and m attribute features shall be: Process-exhibitor exhibits Operation1, Operator2, … , 1608
Operatorn, as well as Attribute1, Attribute2, …, and Attributem. 1609

NOTE 1 In the OPL for exhibition-characterization, for an object exhibitor the list of attributes precedes the list of 1610
operations, while for a process exhibitor the list of operations precedes the list of attributes. 1611

When the representation of the collection of features at the particular extent of detail is incomplete, the 1612
exhibition-characterization relation link shall signify the incomplete representation with an annotation. 1613

Graphically, a short horizontal bar crossing the vertical line below the larger empty triangle denotes the 1614
incomplete exhibition-characterization relation link. 1615

The syntax of the exhibition-characterization relation link for an object exhibitor with a partial collection of j 1616
attribute features and k operation features shall be: Object-exhibitor-thing exhibits Attribute1, Attribute2, …, 1617
Attributej, and at least one other attribute, as well as Operation1, Operator2, …, Operatork, and at least 1618
another operation. 1619

The syntax of the exhibition-characterization relation link for a process exhibitor with a partial collection of j 1620
operation features and k attribute features shall be: Process-exhibitor exhibits Operation1, Operator2, … , 1621
Operatorj, and at least another operation, as well as Attribute1, Attribute2, …, Attributek, and at least one 1622
other attribute. 1623

EXAMPLE Figure 20 through Figure 23 show the four exhibitor-feature combinations of object and process. 1624

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 55

 1625

Material exhibits Specific

Weight.

Person exhibits

Age.

Chemical Element

exhibits Atomic Weight.

Laptop exhibits

Manufacturer.

Figure 20 — Object attribute examples 1626

 1627

 1628

Airplane exhibits

Flying.

Person exhibits

Walking.

Printer exhibits

Printing.

Dog exhibits

Watching.

 Figure 21 — Object exhibitor with operation examples 1629

 1630

Diving exhibits

Depth.

Commanding exhibits

Language.

Printing exhibits

Printer.

Striking exhibits

Duration.

 Figure 22 — Process exhibitor with attribute examples 1631

 1632

Moving exhibits

Accelerating.

Fluctuating exhibits

Stabilizing.

Transmitting exhibits

Delaying.

Communicating exhibits

Interfering.

 Figure 23 — Process exhibitor with operation examples 1633

NOTE 2 A tool should keep track of the set of refinees for each refineable and adjust the symbol and corresponding OPL 1634
sentences (specified below for each fundamental structural relation link) as the modeller changes the collection of refinees. 1635

ISO/PDPAS 19450

56 © ISO 2014 – All rights reserved

10.3.3.2 Attribute state and exhibitor features 1636

10.3.3.2.1 Attribute state as value 1637

An attribute state, i.e. a state of the object that is the refinee attribute, shall be a value for that attribute. The 1638
static, conceptual model, shall identify all possible values for the attribute. Some may be ranges of values, 1639
while the dynamic, operational instance model shall indicate the actual attribute value at the time of the 1640
attribute's inspection (see EXAMPLE 1 and EXAMPLE 2 in 10.3.5.1.). 1641

10.3.3.2.2 Expressing exhibitor-feature relation 1642

When expressing features or values for an attribute, the model shall identify the exhibitor of that feature or 1643
value. To specify the exhibitor of the feature, the relation "of" shall occur in OPL sentences between the 1644
feature and its exhibitor. 1645

The syntax for an OPL sentence identifying the exhibitor-feature relation shall be: Feature of Exhibitor … 1646

EXAMPLE 1 In Figure 27, the OPL sentence indicating the ownership of the attribute Specific Weight by its Metal 1647
Powder Mixture exhibitor is: Specific Weight in gr/cm3 of Metal Powder Mixture ranges from 7.545 to 7.537. 1648

EXAMPLE 2 In Figure 25, the OPL sentence indicating the ownership of the attribute Travelling Medium by its Ship 1649
exhibitor is: Travelling Medium of Ship is water surface. 1650

10.3.4 Generalization-specialization and Inheritance 1651

10.3.4.1 Generalization-specialization relation link 1652

The fundamental structural relation generalization-specialization shall mean that a refineable, the general, 1653
generalizes two or more refinees, which are specializations of the general. The generalization-specialization 1654
relation binds one or more specializations with the same Perseverance as the general, such that both the 1655
general and all its specializations are objects or the general and all its specializations are processes. 1656

Graphically, an empty triangle with its apex connecting by a line to the general and the specializations 1657
connecting by lines to the opposite base shall denote the generalization-specialization relation link (see Figure 1658
24. 1659

For a complete collection of n specializations of a general that is an object, the syntax of the generalization-1660
specialization relation link OPL sentence shall be: Specialization-object1, Specialization-object2, …, and 1661
Specialization-objectn are General-object. 1662

For a complete collection of n specializations of a general that is a process, the syntax of the generalization-1663
specialization relation link OPL sentence shall be: Specialization-process1, Specialization-process2, …, 1664
and Specialization-processn are General-process. 1665

When the representation of the collection of specializations at the particular extent of detail is incomplete, the 1666
generalization-specialization relation link shall signify the incomplete representation with an annotation. 1667

Graphically, a short horizontal bar crossing the vertical line below the empty triangle shall denote the 1668
incomplete generalization-specialization relation link. 1669

For an incomplete set of k specializations of a general that is an object, the syntax of the generalization-1670
specialization relation link OPL sentence shall be: Specialization-object1, Specialization-object2, …, 1671
Specialization-objectk, and other specializations are General-object. 1672

For an incomplete set of k specializations of a general that is a process, the syntax of the generalization-1673
specialization relation link OPL sentence shall be: Specialization-process1, Specialization-process2, …, 1674
Specialization-processk, and other specializations are General-process. 1675

 1676

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 57

EXAMPLE 1677

Digital Camera is a Camera. Hunting is Food Gathering.

Analog Camera and Digital Camera are Cameras. Hunting and Fishing are Food Gathering.

Figure 24 — Single and plural specializations of objects and processes 1678

NOTE A tool should keep track of the set of refinees for each refineable and adjust the symbol and corresponding OPL 1679
sentences for each fundamental structural relation link as the modeller changes the collection of refinees. 1680

10.3.4.2 Inheritance through specialization 1681

Inheritance shall be assignment of OPM elements, things and links, of a general to its specializations. 1682

A specialization thing shall inherit from the general thing through the generalization-specialization link each of 1683
the following four kinds of inheritable elements that exist: 1684

 all the parts of a general from its aggregation-participation link; 1685

 all the features of the general from its exhibition-characterization link; 1686

 all the tagged structural links to which the general connects; and 1687

 all the procedural links to which the general connects. 1688

OPM shall provide the opportunity for multiple inheritances by allowing a thing to inherit from more than one 1689
general thing each of the refines - the four inheritable elements (participants, features, tagged structural links, 1690
and procedural links) that exist for that general thing. 1691

The modeller may override any of the participants of the general thing, which are by default inherited by the 1692
specialization, by specifying for any participant inherited from a general, a specialization of that participant 1693
with a different name and a different set of states. 1694

NOTE When a generalization-specialization relation link exists, at runtime the specialized thing instance does not exist 1695
in the absence of the more general thing instance that it specializes and from which it inherits each of the four kinds of 1696
inheritable elements. 1697

To create a general from one or more candidate specializations, the inheritable elements common to each of 1698
the candidates shall be migrated to a generalization thing. The manipulation of inheritable elements shall be 1699
as follows: 1700

ISO/PDPAS 19450

58 © ISO 2014 – All rights reserved

 Combine all of the common features and common participants of the specializations into one newly 1701
created general; 1702

 Connect the new general using the generalization-specialization relation link to the specializations; 1703

 Remove from the specializations all of the common features and common participants, which the 1704
specializations now inherit from the new general; and 1705

 Migrate any common tagged structural links and any common procedural link edge that connects to 1706
all the specializations from the specializations to the general. 1707

10.3.4.3 Specialization restriction through discriminating attribute 1708

The possible values of an attribute inherited from a general may restrict the permissible value of a 1709
specialization. An inherited attribute with different values that constrain distinct values for corresponding 1710
specialization characteristics shall be a discriminating attribute. 1711

NOTE A specialization inherits the features, and possible attribute values, of its generalization. Elaborating the general 1712
through refinement allows for a more precise valuation of inherited attributes, including specification of attribute value 1713
appropriate for the specialization's characterization through the exhibition-characterization refinement that it inherits (see 1714
also 10.4.1) 1715

EXAMPLE 1 Figure 25 shows an OPD in which Vehicle exhibits the attribute Travelling Medium with values ground, 1716
air, and water surface. Travelling Medium is the discriminating attribute of Vehicle, because it constrains the 1717
specializations of Vehicle to values of its Travelling Medium. Vehicle has specializations Car, Aircraft, and Ship, with 1718
the corresponding Travelling Medium values ground, air, and water surface. 1719

 1720
Vehicle exhibits Travelling Medium. 1721
Travelling Medium of Vehicle can be ground, air, and water surface. 1722
Car, Aircraft, and Ship are Vehicles. 1723
Travelling Medium of Car is ground. 1724
Travelling Medium of Aircraft is air. 1725
Travelling Medium of Ship is water surface. 1726

Figure 25 — The discriminating attribute Travelling Medium and its specializations 1727

A general may have more than one discriminating attribute. The maximum number of specializations with 1728
more than one discriminating attribute shall be the Cartesian product of the number of possible values for 1729
each discriminating attribute, where some combination of attribute values may be invalid. 1730

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 59

EXAMPLE 2 Extending the content of Figure 25, another attribute of Vehicle might be Purpose with the two values 1731
civilian and military. Based on these two values, there are two Vehicle specializations: civilian Vehicle and military 1732
Vehicle. Due to multiple inheritance, the result is an inheritance lattice where the number of the most detailed 1733
specializations would be 3 X 2 = 6 as follows: civilian Car, civilian Aircraft, civilian Ship, military Car, military Aircraft, 1734
and military Ship. 1735

10.3.5 Classification-instantiation link 1736

10.3.5.1 Classification-instantiation relation link 1737

The fundamental structural relation classification-instantiation shall mean that a refineable, the class, classifies 1738
one or more refinees, the instances of the classification. The classification, which is an object class or a 1739
process class, is a source pattern for a thing connecting with one or more destination things, which are 1740
instances of the source thing's pattern, i.e. the qualities the pattern specifies acquire explicit values to 1741
instantiate the instance thing. This relation provides the modeller with an explicit mechanism for expressing 1742
the relationship between a class and its instances, which the provisioning of values creates. 1743

NOTE 1 The use of the term instance when considering members of the instance set of a conceptual class are referred 1744
to as 'refinee instances' to distinguish them from 'operational instances' of an operating model. For every refinee instance, 1745
there are one or more operational instances possible. 1746

NOTE 2 All OPM things expressed in a conceptual model are a class pattern for instances of that thing intended to occur 1747
during model evaluation or operation. By creating a thing in the conceptual model, the modeller is implying that at least 1748
one operational instance of that thing or a specialization of that thing may exist at some time during the system's operation. 1749

If the class pattern includes an exhibition-characterization link specifying a refinee attribute with a permissible 1750
range of values, then the corresponding attribute value of each operational instance of a refinee instance of 1751
that class shall be within the value range specification of its class attribute feature. 1752

Graphically, a small black circle inside an otherwise empty larger triangle with apex connecting by a line to the 1753
class thing and the instance things connecting by lines to the opposite base shall denote the classification-1754
instantiation relation link. 1755

The syntax of the classification-instantiation relation link between an object class and a single instance shall 1756
be: Instance-object is an instance of Class-object. 1757

The syntax of the classification-instantiation relation link between a process class and a single instance shall 1758
be: Instance-process is an instance of Class-process. 1759

The syntax of the classification-instantiation relation link between a process class and n instances shall be; 1760
Instance-object1, Instance-object2, …, Instance-objectn are instances of Class-object. 1761

The syntax of the classification-instantiation relation link between a process class and n instances shall be; 1762
Instance-process1, Instance-process2, …, Instance-processn are instances of Class-process. 1763

NOTE 3 Since the number of instances of any class may not be known a priori and may vary during operation of the 1764
system, there is no distinction between complete and incomplete collections of destination things for the classification-1765
Instantiation relation. 1766

EXAMPLE 1 In Figure 26, Adult is a class with three attributes: Gender, with possible values female and male, Height 1767
in cm, with possible values 120..240, and Weight in kg, with possible values 40..240. Jack Robinson is an instance of 1768
Adult, with Gender value male, Height in cm value 185 and Weight in kg value 88. 1769

ISO/PDPAS 19450

60 © ISO 2014 – All rights reserved

Adult exhibits Gender, Height in cm, and Weight in Kg.

Gender of Adult can be female or male.

Height in cm of Adult ranges from 120 to 240.

Weight in Kg of Adult range from 40 to 240.

Jack Robinson is an instance of Adult.

Gender of Jack Robinson is male.

Height in cm of Jack Robinson is 185.

Weight in kg of Jack Robinson is 88.

Figure 26 — Classification-Instantiation with value range (class on left and instance on right) 1770

EXAMPLE 2 The OPD on the left hand side of Figure 27 is a conceptual model of Metal Powder Mixture, indicating 1771
that its Specific Weight attribute value can range from 7.545 to 7.537 gr/cm

3
. Figure 27 is an operational instance 1772

(runtime) model of Metal Powder Mixture Instance, indicating that its Specific Weight attribute value is 7.555 gr/cm
3
. 1773

This value is within the allowable range. 1774

 1775

Metal Powder Mixture exhibits Specific Weight in gr/cm3. 1776
Specific Weight in gr/cm3 of Metal Powder Mixture ranges from 7.545 to 7.537. 1777
Mixture Lot #7545 is an instance of Metal Powder Mixture. 1778
Specific Weight in gr/cm3 of Metal Powder Mixture is 7.555. 1779

Figure 27 — Attribute state as value: conceptual versus operational models 1780

NOTE 4 The OPL sentence "Mixture Lot #7545 exhibits Specific Weight in gr/cm3.", is not present in the OPL of 1781
Figure 27 because that sentence is implicit from the expressed fact "Mixture Lot #7545 is an instance of Metal Powder 1782
Mixture.", and therefore Mixture Lot #7545 inherits this attribute from Metal Powder Mixture. 1783

10.3.5.2 Instances of object class and process class 1784

An object class and a process class shall be two distinct kinds of classes. An instance of a class shall be an 1785
incarnation of a particular identifiable instance of that class with the same classification identifier. 1786

A single refinee object shall be an object instance, while the pattern of object, to which all of the instances 1787
adhere, shall be an object class, the refineable. 1788

A process class shall be a pattern of happening (the sequence of subprocesses), which involves object 1789
classes that are members of the preprocess and postprocess object sets. A process occurrence, which 1790
follows this pattern and involves particular object instances in its preprocess and postprocess object sets, 1791
shall be a process instance. Hence, a process instance shall be a particular occurrence of a process class to 1792

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 61

which that instance belongs. Any process instance shall have associated with it a distinct set of preprocess 1793
and postprocess object instance sets. 1794

NOTE The power of the process class concept is that it enables the modelling of a process as a template or a protocol 1795
for some transformation that a class of objects undergoes. That transformation includes neither the spatio-temporal 1796
framework nor the particular set of object instances with which the process instance associates. 1797

10.3.6 Fundamental structural relation link and tagged structural link summary 1798

Table 14 — Fundamental structural relations and link summary 1799

Structural Relation
Forward-Reverse

(refineable-to-refinee;

bold is the short name)

OPD Symbol OPL Sentence

Forward

refineable-to-

refinee

Reverse

(refinee-to-

refineable)

Aggregation-
Participation

Whole consists

of Part A and

Part B.

_

Exhibition-
Characterization

Exhibitor

exhibits

Attribute A as

well as

Operation B.

_

Generalization-
Specialization

_

Specialization A

and

Specialization B

are General

Thing.

Classification-
Instantiation

_

Instance A and

Instance B are

instances of

Class.

Unidirectional tagged

[Unidirectional null
tagged]

Source tag-name Destination.

[Source relates to Destination.]

Bidirectional tagged

A a-to-b tag B.

B b-to-a tag A.

ISO/PDPAS 19450

62 © ISO 2014 – All rights reserved

Structural Relation
Forward-Reverse

(refineable-to-refinee;

bold is the short name)

OPD Symbol OPL Sentence

Forward

refineable-to-

refinee

Reverse

(refinee-to-

refineable)

Reciprocal tagged

[Reciprocal null
tagged]

A and B are reciprocal tag.

[A and B are related.]

 1800

10.4 State-specified structural relations and links 1801

10.4.1 State-specified characterization relation link 1802

A state-specified characterization relation link shall be an exhibition-characterization relation link from a 1803
specialized object that exhibits an attribute value for a discriminating attribute of its generalization, meaning 1804
that the specialized object shall have only that value for the attribute it inherits. 1805

Graphically, the exhibition-characterization relation link triangular symbol, with its apex connecting to the 1806
specialized object and its opposite base connecting to the value shown as a state, shall denote the state-1807
specified characterization relation link. 1808

NOTE While not necessary, the OPD will be more understandable if the exhibition-characterization link of the general 1809
with the discriminating attribute appears in the same OPD as well (see Figure 28). 1810

The syntax of the state-specified characterization relation link shall be: Specialized-object exhibits value-1811
name Attribute-Name. 1812

EXAMPLE Using the state-specified characterization relation link, the OPD in in Figure 28 is significantly more 1813
compact than its equivalent OPD in Figure 25. Here, the discriminating attribute Travelling Medium of Vehicle with 1814
values ground, air, and water surface appears only once, as opposed to four times in Figure 25. The model for Car, 1815
Aircraft, and Ship are specializations of Vehicle, connecting each specialization with a state-specified characterization 1816
relation link to the corresponding Travelling Medium value of ground, air, and water surface respectively. 1817

 1818
Vehicle exhibits Travelling Medium. 1819
Travelling Medium of Vehicle can be ground, air, and water surface. 1820
Car, Aircraft, and Ship are Vehicles. 1821

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 63

Car exhibits ground Travelling Medium. 1822
Aircraft exhibits air Travelling Medium. 1823
Ship exhibits water surface Travelling Medium. 1824

Figure 28 — State-specified characterization link example 1825

10.4.2 State-specified tagged structural relations 1826

10.4.2.1 State-specified tagged structural links 1827

A state-specified tagged structural link shall be a tagged structural link between an object state or attribute 1828
value and another object, object state or attribute value, signifying a relation between these two things with the 1829
tag expressing the semantics of the relation. In case of a null tag, i.e. no explicit tag specification, the 1830
corresponding OPL shall use the default null tag (see 10.2.2.). 1831

Three kinds of state-specified tagged structural links shall exist: source state-specified tagged structural link; 1832
destination state-specified tagged structural link; and, source-and-destination state-specified tagged structural 1833
link. Each kind shall include the unidirectional, bidirectional, and reciprocal tagged structural link, giving rise to 1834
seven kinds of state-specified tagged structural relation link and corresponding OPL sentences, which Table 1835
15 summarizes. 1836

10.4.2.2 Unidirectional source state-specified tagged structural link 1837

A unidirectional source state-specified tagged structural link shall be a unidirectional tagged structural link 1838
from a specific state of the source object to a destination object without a state specification. 1839

Graphically, an arrow with an open arrowhead connecting from a state of the source object to the destination 1840
object and a tag-name annotation near the shaft shall denote a unidirectional source state-specified tagged 1841
structural link. 1842

The syntax of the unidirectional source state-specified tagged structural link OPL sentence shall be: 1843
Specified-state source-object tag-name Destination-object. 1844

NOTE A null tag uses the default tag-name "relates to", not in bold, unless modified by the modeller. 1845

10.4.2.3 Unidirectional destination state-specified tagged structural link 1846

A unidirectional destination state-specified tagged structural link shall be a unidirectional tagged structural link 1847
from a source object without a state specification to a specific state of the destination object. 1848

Graphically, an arrow with an open arrowhead connecting from a source object to a specific state of the 1849
destination object and a tag-name annotation near the shaft shall denote a unidirectional destination state-1850
specified tagged structural link. 1851

The syntax of the unidirectional destination state-specified tagged structural link OPL sentence shall be: 1852
Source-object tag-name specified-state Destination-object. 1853

NOTE A null tag uses the default tag-name "relates to", not in bold, unless modified by the modeller. 1854

10.4.2.4 Unidirectional source-and-destination state-specified tagged structural link 1855

A unidirectional source-and-destination state-specified tagged structural link shall be a unidirectional tagged 1856
structural link from a specific state of a source object to a specific state of the destination object. 1857

Graphically, an arrow with an open arrowhead connecting from a specific state of a source object to a specific 1858
state of the destination object and a tag-name annotation near the shaft shall denote a unidirectional source-1859
and-destination state-specified tagged structural link. 1860

The syntax of the unidirectional source-and-destination state-specified tagged structural link OPL sentence 1861
shall be: Source-specified-state source-object tag-name destination-specified-state Destination-object. 1862

ISO/PDPAS 19450

64 © ISO 2014 – All rights reserved

NOTE A null tag uses the default tag-name "relates to", not in bold, unless modified by the modeller. 1863

10.4.2.5 Bidirectional source-or-destination state-specified tagged structural link 1864

A bidirectional source-or-destination state-specified tagged structural link shall be a bidirectional tagged 1865
structural link with a specific state for either the source or destination object but not both. 1866

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link, one connecting 1867
to an object or object state and the other connecting to an object state or object respectively, shall denote a 1868
bidirectional tagged structural link. Each tag-name shall align on the side of the arrow with the harpoon edge 1869
sticking out of the arrowhead, unambiguously determining the direction in which each relation applies. 1870

The syntax of the resulting bidirectional source-or-destination state-specified tagged structural link shall be 1871
two separate unidirectional tagged structural link OPL sentences, one for each direction with the 1872
corresponding state specifications. 1873

10.4.2.6 Bidirectional source-and-destination state-specified tagged structural link 1874

A bidirectional source-and-destination state-specified tagged structural link shall be a bidirectional tagged 1875
structural link with a specific state for both the source and destination object. 1876

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link, connecting a 1877
specific state of one object to a specific state of another object, shall denote a bidirectional tagged structural 1878
link. Each tag-name shall align on the side of the arrow with the harpoon edge sticking out of the arrowhead, 1879
unambiguously determining the direction to which each relation applies. 1880

The syntax of the resulting bidirectional source-and-destination state-specified tagged structural link shall be 1881
two separate unidirectional source-and-destination tagged structural link OPL sentences, one for each 1882
direction with the corresponding state specifications and tag-names. 1883

10.4.2.7 Reciprocal source-or-destination state-specified tagged structural link 1884

A reciprocal source-or-destination tagged structural link shall be a bidirectional source-or-destination tagged 1885
structural link with a specific state for one of the involved objects but not both, and only one reciprocity-tag or 1886
no tag. In either case, reciprocity shall indicate that the tag of a reciprocal source-or-destination state-specified 1887
tagged structural link has the same semantics for each direction of the relation. When no tag appears, the 1888
default tag shall be "are related". 1889

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link, connecting a 1890
specific state of one object to another object without state specification and depicting only one tag-name 1891
aligning with the arrow, shall denote a reciprocal source-or-destination state-specified tagged structural link. 1892

The syntax of the reciprocal source-or-destination state-specified tagged structural link with only one tag shall 1893
be either: Source-specified-state Source-object and Destination-object are reciprocity-tag; or, Source-1894
object and destination-specified-state Destination-object are reciprocity-tag. 1895

10.4.2.8 Reciprocal source-and-destination state-specified tagged structural link 1896

A reciprocal source-and-destination tagged structural link shall be a bidirectional source-and-destination 1897
tagged structural link with a specific state for both involved objects, and only one reciprocity-tag or no tag. In 1898
either case, reciprocity shall indicate that the tag of a reciprocal source-and-destination state-specified tagged 1899
structural link has the same semantics for each direction of the relation. When no tag appears, the default tag 1900
shall be "are related". 1901

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link, connecting a 1902
specific state of one object to a specific state of another object and depicting only one tag-name aligning with 1903
the arrow, shall denote a reciprocal source-and-destination state-specified tagged structural link. 1904

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 65

The syntax of the reciprocal source-and-destination state-specified tagged structural link with only one tag-1905
name shall be: Source-specified-state Source-object and destination-specified-state Destination-object 1906
are reciprocity-tag. 1907

The syntax of the reciprocal source-and-destination state-specified tagged structural link with no tag-name 1908
shall be: Source-specified-state Source-object and destination-specified-state Destination-object are 1909
related. 1910

10.4.2.9 State-specified tagged structural link summary 1911

Table 15 — State-specified structural relations and links summary 1912

Source/

Destination

Directionality

source state-specified
destination state-

specified

source-and-
destination state-

specified

unidirectional

S A tag-name B.

B tag-name s A.

Sa A tag-name sb B.

bidirectional

S A f-tag-name B.

B b-tag-name s A.

Sa A f-tag-name sb B.

Sb B b-tag-name sa A.

reciprocal

B and s A are recip-tag-name.

Sa A and sb B are
recip-tag-name.

 1913

ISO/PDPAS 19450

66 © ISO 2014 – All rights reserved

 1914
Check can be blank, signed, endorsed, or cashed & cancelled. 1915
Check exhibits Keeper. 1916
Keeper can be payer, payee, or financial institution. 1917
Payer Keeper relates to Payer. 1918
Payee Keeper relates to Payee. 1919
Financial institution Keeper relates to Bank. (remaining OPL omitted) 1920

Figure 29 — Associating attribute values with objects via state-specified structural link 1921

EXAMPLE 1 In the OPD in Figure 29, Keeper is an attribute of Check with values payer, payee, and bank. Each of 1922
these values is also an object in its own right in the model. Three unidirectional, source-state-specified null-tagged 1923
structural links connect each value to its corresponding object. Note that there is no requirement that the name of the state 1924
or value be the same as the name of the related object, as demonstrated by financial institution and Bank. 1925

EXAMPLE 2 In the OPD in Figure 30, each one of the three Phase values of Water is associated with its corresponding 1926
Temperature value range via three source-and-destination state-specified tagged structural links whose tag is "exists for 1927
the range of". 1928

 1929

Water exhibits Phase and Temperature in Celsius. 1930
Phase can be solid, liquid, or gas. 1931
Temperature in Celsius can be below zero, between zero and 100, or above 100. 1932
Solid Phase exists for the range of below zero Temperature in Celsius. 1933
Liquid Phase exists for the range of between zero and 100 Temperature in Celsius. 1934
Gas Phase exists for the range of above 100 Temperature in Celsius. 1935

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 67

Figure 30 — Source-and-destination state-specified tagged structural link 1936

11 Relationship cardinalities 1937

11.1 Object multiplicity in structural and procedural links 1938

Object multiplicity shall refer to a requirement or constraint specification, sometimes called a participation 1939
constraint, on the quantity or count of object operational instances associated with a link. Unless a multiplicity 1940
specification is present, each end of a link shall specify only one object operational instance. Multiplicity 1941
specifications may appear in the following situations: 1942

(1) to specify multiple source or destination object operational instances for a tagged structural link of 1943
any kind; 1944

(2) to specify a participant object with multiple operational instances in an aggregation-participation 1945
link, where a different participation specification may be attached to each one of the parts of the 1946
whole; and 1947

(3) to specify an object with multiple operational instances in a procedural relation. 1948

The specification of object multiplicity may occur as integers or as parameter symbols that resolve to integer 1949
values during model execution and may include arithmetic expressions. The specification may include a range 1950
of values or a set of value ranges. 1951

Graphically, an integer, a range of integers, a parameter symbol, a range of parameter symbols, or set of 1952
integers or parameter symbols, any of which may appear as annotations near the link end to which it applies, 1953
shall denote object multiplicity. 1954

The syntax of an OPL sentence that includes an object with multiplicity shall include the object multiplicity 1955
preceding the object name, with the object name appearing in its plural form if the cardinality specifies more 1956
than one operational instance is possible. The following EXAMPLES present some of the many uses of object 1957
multiplicity on OPL sentences. 1958

EXAMPLE Figure 31 shows in the left OPD a participation constraint on the destination end of a unidirectional 1959
tagged structural link. On the right OPD is a participation constraint on the destination (part) end for one of two objects of 1960
an aggregation-participation link. 1961

 1962

 Factory comprises 3 Shopfloors. Printer consists of 3 Color Cartridges, Black 1963

 Cartridge, and other parts. 1964

Figure 31 — Object multiplicity examples 1965

Object multiplicity may be a parameter or a range of parameters or a set of two or more ranges of numbers 1966
and/or parameters separated by a comma. A range shall be indicated as qmin .. qmax and shall be closed, i.e. 1967
include the boundaries qmin and qmax. In OPL, the expression of the range symbol ".." shall be "through" and 1968
the expression of the comma that separates two adjacent ranges shall be "or". 1969

ISO/PDPAS 19450

68 © ISO 2014 – All rights reserved

The specification of object multiplicity may occur as an optionality parameter using the range symbol, the 1970
asterisk symbol and the question mark symbol in the following manner: 1971
 1972

 "0..1" shall mean zero or one, using the question mark (?) annotation near the object to which it 1973
applies with an OPL syntax of "an optional " immediately preceding the object; 1974

 "0..*" shall mean zero or more, using the asterisk symbol (*)annotation near the object to which it 1975
applies with the OPL syntax of "optional " immediately preceding the object, and 1976

 "1..*" shall mean one or more, using the plus symbol (+) annotation near the object to which it applies 1977
with OPL syntax of "at least one " immediately preceding the object 1978

NOTE 1 The range symbol ".." has two uses in multiplicity specification, one as a separator between two boundary 1979
values, e.g. qmin .. qmax, with interpretation of "through" and one as separator between optional values, e.g. "0..*" , with 1980
interpretation of "or". 1981

NOTE 2 Care is necessary when specifying cardinality constraints so that the constraint applies to the object as specified 1982
and not a property of that object. If the object has a unit of measure, then multiplicity refers to the count of single units of 1983
that measure, e.g. 32 Water in millilitres. 1984

Table 16 - Link optionality summary 1985

Lower & Upper

Bounds qmin .. qmax

Participation

Constraint Symbol

& OPL Phrase

OPD Example & Corresponding OPL Sentence

0..1
?

an optional

Car has an optional Sunroof.

0..*

*

optional

(+ plural)

Car is equipped with optional Airbags.

1..1 (none)

Car is steered by Steering Wheel.

1..*
+

at least one

Car carries at least one Spare Tire.

 1986

11.2 Object multiplicity expressions and constraints 1987

Object multiplicity may include arithmetic expressions, which shall use the operator symbols "+", "–", "*", "/", "(", 1988
and ")" with their usual semantics and shall use the usual textual correspondence in the corresponding OPL 1989
sentences. 1990

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 69

An integer or an arithmetic expression may constrain object multiplicity. Graphically, expression constraints 1991
shall appear after a semicolon separating them from the expression that they constrain and shall use the 1992
equality/inequality symbols "=", "<", ">", "<=", and ">=", the curly braces "{" and "}" for enclosing set members, 1993

and the membership operator "in" (element of, ∈), all with their usual semantics. The corresponding OPL 1994

sentence shall place the constraint phrase in bold letters after the object to which the constraint applies in the 1995
form ", where constraint". 1996

EXAMPLE 1 1997

 1998
Machine Center controls 3 to 5 or 8 to 10 Machines. 1999
Machine Center controls 2 or 3*n Machines, where n<=4. 2000

Figure 32 — Object multiplicity examples with ranges and parameters 2001

EXAMPLE 2 Figure 33 models a Blade Replacing system in which a Jet Engine has b Installed Blades. Two to four 2002
(a number set to k) Aviation Engine Mechanics handle the Blade Replacing process, for which they use k Blade 2003
Fastening Tools. Also, one or two Aerospace Engineers handle the Blade Replacing process. This process yields b 2004
Dismantled Blades, which undergo Blade Inspecting, an environmental process that yields a (which is at most b) of 2005
Inspected Blades. The process consumes a total of b Blades, with i inspected and b–i new. Any number of new 2006
Blades can be obtained by Purchasing them. 2007

k=2 to 4 Aviation Engine Mechanics handle Blade Replacing. 2008

Jet Engine can be used or refurbished. 2009
Jet Engine consists of b Installed Blades. 2010
1 to 2 Aerospace Engineers handle Blade Replacing. 2011
An optional Aerospace Engineer handles Blade Inspecting. 2012
Blade can be inspected or new. 2013
Blade Replacing requires k Blade Fastening Tools. 2014
Blade Replacing changes Jet Engine from used to refurbished. 2015

ISO/PDPAS 19450

70 © ISO 2014 – All rights reserved

Blade Replacing consumes i inspected Blades and b – i new Blades. 2016
Blade Replacing yields b Dismantled Blades. 2017
Blade Inspecting consumes b Dismantled Blades. 2018
Blade Inspecting yields a <= b inspected Blades. 2019
Purchasing yields many new Blades. 2020

Figure 33 — Object multiplicity: arithmetic expressions and constraints example 2021

If an object multiplicity parameter has more than one constraint, they shall appear as a semicolon-separated 2022
list of constraints following the parameter. Any constraint may include any object multiplicity parameter 2023
appearing in the model. Parameter names shall be unique for the entire system model. 2024

EXAMPLE 3 Figure 34 depicts a way to specify parameterized participation constraints in an OPD and the 2025
corresponding OPL sentences. 2026

Airplane consists of Body, 2 Wings, and e Engines, where e >= 1, e = b+2*w. 2027
b Engines are attached to Body, where b in {0, 1}. 2028
w Engines are attached to Wing, where 0 <= w <= 3. 2029

Figure 34 — Multiple parameterized constraints example 2030

NOTE 1 Aggregation-participation is the only fundamental structural relation for which participation constraints apply. 2031

NOTE 2 Expressing multiplicity of processes does not use participation constraints. Rather, expressing sequential 2032
repetition of the same process uses a recurrent process with a counter for the number of iterations. Parallel synchronous 2033
processes or asynchronous processes within an in-zoomed process provide other iteration mechanisms. 2034

11.3 Attribute value and multiplicity constraints 2035

The expression of object multiplicity for structural and procedural links specifies integer values or parameter 2036
symbols that resolve to integer values. In contrast, the values associated with attributes of objects or 2037
processes may be integer or real values, or parameter symbols that resolve to integer or real values, as well 2038
as character strings and enumerated values. 2039

NOTE 1 Real values accommodate expression using the unit of measure associated with the object. 2040

Graphically, a labelled, rounded-corner rectangle placed inside the attribute to which it belongs shall denote 2041
an attribute value with the value or value range (integers, real numbers, or string characters) corresponding to 2042
the label name. In OPL text, the attribute value shall appear in bold face without capitalization. 2043

The syntax for an object with an attribute value OPL sentence shall be: Attribute of Object is value. 2044

The syntax for an object with an attribute value range OPL sentence shall be: Attribute of Object range is 2045
value-range. 2046

NOTE 2 Attribute value range has the same expressiveness applicable for object multiplicity, except optionality. 2047

A structural or a procedural link connecting with an attribute that has a real number value may specify a 2048
relationship constraint, which is distinct from an object multiplicity. 2049

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 71

Graphically, an attribute value constraint is an annotation by a number, integer or real, or a symbol parameter, 2050
near the attribute end of the link and aligning with the link. 2051

12 Logical operators: AND, XOR, and OR 2052

12.1 Logical AND procedural links 2053

A group of two or more procedural links of the same kind that originate from, or arrive at, the same process 2054
shall have the semantics of logical AND. 2055

Graphically, the links with AND semantics do not touch each other on the process contour. 2056

The syntax of links with AND semantics shall be a phrase using "and" conjunction in a single OPL sentence 2057
rather than separate sentences for each link 2058

EXAMPLE 1 Figure 35 (right), the Safe Opening process requires both Safe Owner A and Safe Owner B. In Figure 2059
35 (left), opening the Safe requires all three keys. 2060

 2061

Safe can be closed or open. Safe can be closed or open. 2062
Safe Opening requires Key A, Key B, and Key C. Safe Owner A and Safe Owner B handle Safe Opening. 2063
Safe Opening changes Safe from closed to open. Safe Opening changes Safe from closed to open. 2064

Figure 35 — Logical AND for Agent and Instrument Links 2065

EXAMPLE 2 In Figure 36 (left), Meal Preparing yields all three of the dishes. In Figure 36 (right), Meal Eating 2066
consumes all three dishes. 2067

 2068

Chef handles Meal Preparing. Meal Eating affects Diner. 2069
Meal Preparing yields Starter, Entree, and Dessert. Meal Eating consumes Dessert, Entree, and Starter. 2070

Figure 36 — Logical AND for Result and Consumption Links 2071

EXAMPLE 3 In the OPD on the left of Figure 37, Interest Rate Changing affects the three objects Exchange Rate, 2072
Price Index, and Interest Rate. In the OPD on the right, all three effects of Interest Rate Raising on Exchange Rate, 2073
Price Index, and Interest Rate are explicit via three pairs of input-output-specified effect links. 2074

ISO/PDPAS 19450

72 © ISO 2014 – All rights reserved

 2075

Central Bank handles Interest Rate Changing. Central Bank handles Interest Rate Changing. 2076
Interest Rate Changing affects Exchange Rate, Interest Rate can be high or low. 2077
Price Index, and Interest Rate. Price Index can be low or high. 2078

Exchange Rate can be high or low. 2079
Interest Rate Raising changes Exchange Rate from 2080

 low to high, Price Index from low to high, and Interest Rate 2081
 from low to high. 2082

Figure 37 — Logical AND for Effect Link and Input-Output Links Pair 2083

NOTE See 13 for impacts of path labels on AND syntax. 2084

12.2 Logical XOR and OR procedural links 2085

A group of two or more procedural links of the same kind that originate from a common point, or arrive at a 2086
common point, on the same object or process shall be a link fan. A link fan shall follow the semantics of either 2087
a XOR or an OR operator. The link fan end that is common to the links shall be the convergent link end. The 2088
link end that is not common to the links shall be the divergent link end. 2089

The XOR operator shall mean that exactly one of the things at the divergent link end of the link fan exists. If 2090
the divergent link end has objects, then only one exists. If the divergent link end has processes, then only one 2091
occurs. 2092

NOTE This use of the XOR operator in OPM is different to some binary XOR operator interpretations, where the 2093
output is 1 for an odd number of inputs and 0 for an even number of inputs. 2094

Graphically, a dashed arc across the links of the link fan with the arc focal point at the convergent end-point of 2095
contact shall denote the XOR operator. 2096

The syntax of a link fan of n things with XOR semantics shall be a single OPL sentence containing a phrase of 2097
the form: exactly one of Thing1, Thing2,…, and Thingn... 2098

The OR operator shall mean that at least one of the two or more things at the divergent end of the link fan 2099
exists. If the divergent link end has objects, then at least one object exists. If the divergent end has processes, 2100
then at least one process occurs. 2101

Graphically, two concentric dashed arcs across the links of the link fan with the focal point at the convergent 2102
end-point of contact shall denote the OR operator. 2103

The syntax of a link fan of n things with OR semantics shall be a single OPL sentence containing a phrase of 2104
the form: at least one of Thing1, Thing2,…, and Thingn... 2105

EXAMPLE In the OPD on the right of Figure 38, using XOR, exactly one of Safe Owner A and Safe Owner B must 2106
be present in order for Safe Opening to occur. In the OPD on the left, using OR, at least one of Safe Owner A and Safe 2107
Owner B must be present in order for Safe Opening to occur. The link fan here is convergent and consists of two agent 2108
links. 2109

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 73

Exactly one of Safe Owner A and Safe Owner B

handles Safe Opening.

At least one of Safe Owner A and Safe Owner B

handles Safe Opening.

Figure 38 — Logical OR (left) and logical XOR (right) examples of Agent link 2110

12.3 Diverging and converging XOR and OR links 2111

Table 17 shows that when the source things are objects and the destination thing is a process, the 2112
consumption link fan is converging, while when the source things are processes and the destination thing is 2113
an object, the result link fan is converging. 2114

Table 17 — Summary of XOR and OR converging consumption and result links 2115

 XOR OR

Converging
consumption

link fan

P consumes exactly one of A, B , or C.

P consumes at least one of A, B , or
C.

Converging
result link

fan

Exactly one of P, Q, or R yields B.

At least one of P, Q, or R yields B.

 2116

Table 18 shows that when the source thing is an object and the destination things are processes, the 2117
consumption link fan shall be diverging, while when the source thing is a process and the destination things 2118
are objects, the result link fan shall be diverging. 2119

ISO/PDPAS 19450

74 © ISO 2014 – All rights reserved

Table 18 — Summary of XOR and OR diverging consumption and result link fans 2120

 XOR OR

Divergin
g

consump
tion link

fan

Exactly one of P, Q , or R consumes B.

At least one of P, Q , or R consumes B.

Divergin
g result
link fan

P yields exactly one of A, B, or C.

P yields at least one of A, B, or C.

 2121

Since an effect link is bidirectional, the things linked by an effect link fan are both source and destination at the 2122
same time, voiding the definitions of convergent and divergent link fans. Instead, as Table 19 shows, the 2123
distinction shall occur with respect to multiple objects or multiple processes that a link fan connects. 2124

Table 19 — Summary of XOR and OR joint effect link fans 2125

 XOR OR

Multiple
objects

effect link
fan

P affects exactly one of A, B, or C.

P affects at least one of A, B, or C.

Multiple
processes
effect link

fan

Exactly one of P, Q, or R affects P.

At least one of P, Q, or R affects P.

 2126

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 75

Since an enabler is an object, as shown in Table 20, both agent and instrument link fans shall be divergent 2127
with multiple processes as targets. 2128

Table 20 — Agent and instrument link fans 2129

 XOR OR

Agent link
fan

B handles exactly one of P, Q, or R.

B handles at least one of P, Q, or R.

Instrument
link fan

Exactly one of P, Q, or R requires B.

At least one of P, Q, or R requires B.

 2130

Invocation link fans may be diverging or converging for both XOR and OR, as shown in Table 21. 2131

Table 21 — Invocation link fans 2132

 XOR OR

Diverging
invocation

link fan

P invokes exactly one Q or R.

P invokes at least one of Q or R.

Converging
invocation

link fan

Exactly one of P or Q invokes R.

At least one of P or Q invokes R.

 2133

12.4 State-specified XOR and OR link fans 2134

Each one of the link fans in 12.3 shall have a corresponding state-specified version, where the source and 2135
destination may be specific object states or objects without a state specification. Combinations of state-2136
specified and stateless links as destinations of a link fan may occur. 2137

ISO/PDPAS 19450

76 © ISO 2014 – All rights reserved

EXAMPLE Figure 39 shows on the left a XOR state-specified instrument link fan and on the right an OR mixed result 2138
link fan where the links are state-specified for objects A and C but not for B. 2139

 2140

 Exactly one of P, Q, or R requires s2 B. P yields at least one of s3 A, B, or s5 C. 2141

Figure 39 — State-specified XOR and OR link examples 2142

12.5 Control-modified link fans 2143

Each one of the XOR link fans for consumption, result, effect, and enabling links and their state-specified 2144
versions shall have a corresponding control-modified link fan: an event link fan and a condition link fan. 2145

Table 22presents the event and condition effect link fans, as representatives of the basic (non-state-specified) 2146
links version of the modified link fans. 2147

Table 22 — Event and condition effect link fans 2148

Event Condition

B initiates exactly one of P, Q, or R, which affects the

occurring process.

Exactly one of P, Q, or R occurs if B exists, in which case

the occurring process affects B, otherwise these processes

are skipped.

 2149

12.6 State-specified control-modified link fans 2150

Each one of the control-modified link fans, except the control-modified effect link fan, shall have a 2151
corresponding state-specified control-modified link fan. Since these state-specified versions are more 2152
complicated than their non-state-specified version, Table 23 presents the OPD and OPL of the state-specified 2153
versions and the corresponding stateless version below for each state-specified version. 2154

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 77

Table 23 — State-specified and stateless control-modified link fans 2155

Link fan kind Event Control modifier Condition Control modifier

Consumptio
n link fan

S2 B initiates and handles exactly one of P, Q, or R,

which consumes the initiated process.

The stateless case:

B initiates exactly one of P, Q, or R, which

consumes the initiated process.

Exactly one of P, Q, or R occurs if B is s2, in

which case the occurring process consumes B,

otherwise these processes are skipped.

The stateless case:

Exactly one of P, Q, or R occurs if B exists, in

which case the occurring process consumes B,

otherwise these processes are skipped.

Agent link
fan

S2 B initiates and handles exactly one of P, Q, or R.

The stateless case:

B initiates and handles exactly one of P, Q, or R.

B handles exactly one of P, Q, or R if B is s2,

otherwise these processes are skipped.

The stateless case:

B handles exactly one of P, Q, or R if B exists,

otherwise these processes are skipped.

Instrument
link fan

S2 B initiates exactly one of P, Q, or R, which

requires s2 B.

The stateless case:

B initiates exactly one of P, Q, or R, which requires

s2 B.

Exactly one of P, Q, or R requires that B is s2,

otherwise these processes are skipped.

The stateless case:

Exactly one of P, Q, or R requires that B exists,

otherwise these processes are skipped.

 2156

Each XOR link fan in Table 22 and in Table 23 shall have its OR counterpart (designated by a double-dotted 2157
arc) with a corresponding OPL sentence in which the reserved phrase "at least" replaces "exactly". 2158

ISO/PDPAS 19450

78 © ISO 2014 – All rights reserved

12.7 Link probabilities and probabilistic link fans 2159

A process P with a result link that yields a stateful object B with n states, s1 through sn, without specifying a 2160
particular state shall mean that the probability of generating B at any one particular state shall be 1/n. In this 2161
case, the single result link to the object shall replace the result link fan to each of its states. 2162

EXAMPLE 1 In the left OPD of Figure 40, the result link from P to B, which has three states, means that P will create B 2163
with equal probability, Pr = 1/3, for creation at each state. The right OPD of Figure 40 shows the more cumbersome way to 2164
express the same situation. 2165

B can be s1, s2, or s3.

P yields B.

B can be s1, s2, or s3.

P yields exactly one of s1 B, s2 B, or s3 B.

Figure 40 — Equivalence between result link and a set of XOR state-specified result links 2166

Generally, probabilities of following a specific link in a link fan are not equal. Link probability may be a property 2167
value assigned to a link in a XOR diverging link fan that specifies the probability of following that particular link 2168
among the possible links in the fan link. A probabilistic link fan shall be a link fan with annotations on each fan 2169
link for its probability property, where the sum of the probabilities shall be exactly 1. 2170

Graphically, along each fan link with a probability property an annotation shall appear in the form Pr=p, where 2171
p is the link probability numeric value or a parameter, which denotes the probability of the system execution 2172
control to select and follow that particular link of the fan. 2173

The corresponding OPL sentence shall be the XOR diverging link fan sentence without link probabilities 2174
omitting the phrase "exactly one of…" and the phrase "…with probability p" following each participating thing 2175
name with a probability annotation "Pr=p". 2176

EXAMPLE 2 Figure 41 shows two probabilistic state-specified object creation examples and their deterministic 2177
analogues. In the OPD on the left, process P can create object B in three possible states, s1, s2, or s3, with 2178
corresponding probabilities 0.32, 0.24, and 0.44 indicated along each result link of the result link fan. In the OPD on the 2179
right, P can create one of the objects A, B, or C at state sc1 with the probabilities indicated along each result link of the 2180
result link fan. 2181

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 79

P yields s1 B with probability 0.32, s2 B with probability 0.24, or

s3 B with probability 0.44.

The analogous deterministic case:

P yields exactly one of s1 B, s2 B, or s3 B.

P yields A with probability 0.3, B with probability q, or sc1 C with

probability 0.7-q.

The analogous deterministic case:

P yields exactly one of A, B, or sc1 C.

Figure 41 — Probabilistic state-specified object creation examples 2182

For a process P with a result link that yields a stateful object B with states s1 through sn, and with initial state 2183
si, P shall create B at state si with probability 1.0. However, if B has m with m < n initial states, P shall create 2184
B at one of the initial states with probability 1/m. 2185

For a probabilistic result link fan, any one of the resultees may be an object without or with a specified state. 2186
For all the link fans comprising other procedural link kinds (including those with the event and condition control 2187
modifiers), where the targets of the links in the link fan are processes, the source may be an object or a 2188
specified state of an object. 2189

EXAMPLE 3 The OPD in the top of Figure 42 shows a probabilistic result link fan in which P yields, with specified 2190
probabilities, one of the objects A or B, or C at state sc1, or D at state sd1 or sd2. The OPD in the middle of Figure 42 2191
shows a probabilistic consumption link fan in which A is consumed, with specified probabilities, by one of the processes P 2192
or Q or R. The OPD in the bottom expresses the same, with the additional fact that A must be at state s2. 2193

P yields A with probability 0.3, B with probability 0.2, sc1 C

with probability 0.1, sd1 D with probability

0.25, or sd2 D with probability 0.15. ..

ISO/PDPAS 19450

80 © ISO 2014 – All rights reserved

P with probability p, Q with probability q, or R with probability 1-p-q

consumes A.

P with probability p, Q with probability q, or R with probability 1-p-q

consumes s2 A.

Figure 42 — Objects with and without specified states as resultees and consumees of a probabilistic 2194
link fan 2195

13 Execution path and path labels 2196

A path label shall be a link property and corresponding annotation aligning a pair of procedural links. When 2197
the process precondition involves an object with path label link connections, and the postprocess object set 2198
has more than one possibility for destination object, the appropriate postprocess object set destination shall 2199
be the one obtained using a link with the same path label as that used by the preprocess object set. 2200

EXAMPLE 1 In Figure 43, there are two output links: one from Heating to the state liquid of Water and the other to 2201
state gas. When entering Heating from state ice, it is not clear whether the result state is liquid or gas. The path labels 2202
along the procedural links, resolve this dilemma by uniquely determining the appropriate link on process exit, as shown by 2203
the animated simulation on the left. 2204

 2205

Water can be ice, liquid, or gas. 2206

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 81

Following path ice-to-liq, Heating changes Water from ice to liquid. 2207
Following path liq-to-gas, Heating changes Water from liquid to gas. 2208

Figure 43 — Execution path and path labels 2209

NOTE A path label is a label on a procedural link that removes the ambiguity arising from multiple outgoing 2210
procedural links by specifying that the link to follow is the one with the same label as the one initiating the process. 2211

EXAMPLE 2 Figure 44 demonstrates the use of path labels on consumption and result links, followed by the OPL 2212
paragraph. 2213

 2214

Following path carnivore, Food Preparing consumes Meat. 2215
Following path herbivore, Food Preparing consumes Cucumber and Tomato. 2216
Following path carnivore, Food Preparing yields Stew and Steak. 2217
Following path herbivore, Food Preparing yields Salad. 2218

Figure 44 — Path labels demonstrated on consumption and result links 2219

 2220

14 Context management with Object-Process Methodology 2221

14.1 Completing the system diagram 2222

The definition of system purpose, scope, and function in terms of boundary, stakeholders, preconditions and 2223
postconditions shall be the basis for determining whether other elements, including environmental things, 2224
should appear in the model. 2225

The System Diagram (SD) shall be an OPD that models: 2226

 the stakeholders, in particular the beneficiaries; 2227

 a process to convey the functional value the beneficiary expects to receive; and 2228

 other environmental and systemic things necessary to create a succinct corresponding OPL 2229
paragraph. 2230

The corresponding OPL paragraph should provide the situational context for the system's operation. 2231

Expression of the functional value may be: 2232

 explicit, by identifying the source input and destination output states of the beneficiary or the initial 2233
and final values of one or more of its attributes, or 2234

 implicit, by indicating that the beneficiary is affected by the system's function. 2235

The SD should contain only the central, important things – those things indispensable for understanding the 2236
function and context of the system. The modeller shall use OPM's refinement mechanisms to expose 2237
gradually the detail concerning the things that are the content of the SD. 2238

ISO/PDPAS 19450

82 © ISO 2014 – All rights reserved

EXAMPLE In a Manufacturing Facility, the Beneficiary has developed and deployed a Preventive Maintenance 2239
System. The function of the system, Preventive Maintenance Executing, changes the Downtime attribute of the 2240
Manufacturing Facility from "high" to "low". This change adds functional value to the Manufacturing Facility, as it has 2241
more up-time to manufacture products and increase sales and revenues at the cost of investing in developing and 2242
operating the Preventive Maintenance System. 2243

14.2 Achieving model comprehension 2244

14.2.1 OPM refinement-abstraction mechanisms 2245

OPM shall provide abstracting and refining mechanisms to manage the expression of model clarity and 2246
completeness. These mechanisms make possible the specification of contextualized model segments as 2247
separate, yet interconnected OPDs, which, taken together, should provide a model of the functional value 2248
providing system. These mechanisms shall enable presenting and viewing the modelled system, and the 2249
elements it contains, in various contexts that are interrelated by the common objects, processes and relations. 2250
The set of clearly specified and compatible interconnected Object-Process Diagrams should completely 2251
specify the entire system to an appropriate extent of detail and provide a comprehensive representation of that 2252
system with a corresponding textual statement of the model in OPL. 2253

The OPM refinement-abstraction mechanisms shall be the following three pairs: State expression and 2254
suppression, unfolding and folding, and in-zooming and out-zooming. 2255

14.2.1.1 State expression and state suppression 2256

Explicitly depicting the states of an object in an OPD may result in a diagram that is too crowded or busy, 2257
making it hard to read or comprehend. 2258

OPM shall provide an option for state suppression, which suppresses the appearance of some or all the states 2259
of an object as represented in a particular OPD when those states are not necessary in that OPD's context. 2260

The inverse of state suppression shall be state expression, which exposes information concerning possible 2261
object states. The OPL corresponding to an OPD shall express the states of the objects only as the OPD 2262
depicts. 2263

In OPM the modeller may suppress any subset of states. However, the complete set of object states for an 2264
object shall be the union of the states of that same object appearing in all of the OPDs of the entire OPM 2265
model. 2266

Graphically, the annotation indicating that an object presents a proper subset (i.e. at least one but not all) of its 2267
states, shall be a small state suppression symbol in the object's right bottom corner. This symbol appears as a 2268
small state with an ellipsis label, which signifies the existence of one or more states that the view is 2269
suppressing, The textual equivalence of the state suppression symbol shall be the reserved phrase "or other 2270
states". 2271

EXAMPLE 2272

 A can be s1, s2, s3, s4, or s5.

 P changes A from s1 to s3.

 A can be s1, s3, or other states.

 P changes A from s1 to s3.

Figure 45 — A stateful object with all states expressed (left) and a suppressed version (right) 2273

 2274

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 83

14.2.1.2 Unfolding and folding 2275

Unfolding shall be a mechanism for refinement, elaboration, or decomposition. Unfolding shall reveal a set of 2276
things that relate to the unfolded thing. The result of unfolding shall be a hierarchy tree, the root of which shall 2277
be the unfolded thing. Linked to the root shall be the things that constitute the elaboration of the unfolded thing. 2278

Conversely, folding shall be a mechanism for abstraction or composition, which shall apply to an unfolded 2279
hierarchical tree. Folding shall hide the set of unfolded things, leaving just the root. 2280

Each of the four fundamental structural relation links may apply unfolding and folding.. The four kinds of 2281
unfolding-folding pairs shall be: 2282

 aggregation unfolding—exposing the parts of a whole, and participation folding—hiding the parts of a 2283
whole; 2284

 exhibition unfolding—exposing the exhibitor's features, and characterization folding—hiding the 2285
exhibitor's features; 2286

 generalization unfolding—exposing the specializations of the general, and specialization folding—2287
hiding the general's specializations; and 2288

 classification unfolding—exposing the class instances, and instantiation folding—hiding the class 2289
instances 2290

In-diagram unfolding shall occur when the refineable and its refinees appear unfolded in the same OPD. 2291
Because unfolding uses the fundamental structural links, in-diagram unfolding is graphically, syntactically and 2292
semantically equivalent to using fundamental structural links. 2293

New-diagram unfolding shall occur when the refineable and its refinees appear unfolded in a new OPD. 2294

Graphically, the refineable shall have a thick contour in both the more abstract OPD in which the refineable 2295
appears folded without refinees, and in the new more detailed OPD context, in which the refineable appears 2296
unfolded and connects to its refinees with one or more fundamental structural link. 2297

The corresponding OPL sentence for the new-diagram OPD where the refineable has n refinees shall be: 2298
Refineable unfolds into Refinee1, Refine2,…, and Refinen 2299

NOTE 1 Unfolding may be more precisely specified as part-unfolding, feature-unfolding, specialization-unfolding, and 2300
instance-unfolding (see A.4.7.2). 2301

The modeller decision whether to use in-diagram or new-diagram unfolding should account for the trade-off 2302
between the clutter added to the current OPD and the need to create a new OPD for displaying the refinees 2303
and associated links amongst them. 2304

NOTE 2 Unfolding often occurs as a combination of new-diagram and in-diagram unfolding to represent multiple 2305
elaboration or decomposition situations. 2306

NOTE 3 Partial unfolding may be depicted in the same manner as a partial fundamental structural relation link. 2307

To satisfy a particular contextual relevance for an OPD, a modeller may choose which refinees appear 2308
unfolded. Following the bimodal representation of OPM, the OPL corresponding to the OPD shall express only 2309
those refinees that appear in that OPD. 2310

NOTE 4 Partial folding is equivalent to partial unfolding where the collections of each are complementary. 2311

NOTE 5 Unfolding reveals finer structural details rather than behaviour, i.e. no transfer of execution control occurs, 2312
see 14.2.2. However, hierarchical dependencies involving procedural links may result in behavioural changes associated 2313
with use of the unfolded thing. 2314

ISO/PDPAS 19450

84 © ISO 2014 – All rights reserved

14.2.1.3 In-zooming and out-zooming 2315

In-zooming shall be a kind of unfolding that combines aggregation-participation and exhibition-characterization 2316
with additional semantics. For processes, in-zooming enables modelling the subprocesses, their temporal 2317
order, their interactions with objects, and passing of execution control to and from that context. For objects, in-2318
zooming creates a distinct context that enables modelling of the constituent objects' spatial or logical order. 2319

Graphically, for both in-diagram and new-diagram process in-zooming, the ellipse of the refineable enlarges to 2320
accommodate the symbols for the refinees, and the links amongst them, which are within the in-zoom context. 2321
In the case of new-diagram in-zooming, the refineable shall have a thick contour in both the more abstract 2322
OPD in which the refinealbe appears without refinees, and in the new more detailed OPD context, in which the 2323
refineable appears surrounding the subprocess refinees and attendant objects.. 2324

The corresponding process in-zoom OPL sentence shall be: Process zooms into Subprocess A, 2325
Subprocess B, and Subprocess C, in that sequence 2326

NOTE 1 In zooming may be more precisely specified by indicating the abstract OPD name and the more detailed OPD 2327
name (see A.4.7.4). 2328

The context of an in-zoomed process shall include the subprocesses, which are parts of the in-zoomed 2329
process, and possibly interim objects that are attributes of the in-zoomed process. The contextual scope of the 2330
in-zoomed process shall be the refineable, its subprocesses, attributes and links as depicted in the OPD. 2331

The execution timeline within the context of an in-zoomed process shall flow from the top of its enlarged 2332
process ellipse symbol to the bottom of that ellipse. This timeline shall depict the sequence of subprocess 2333
invocations. The vertical arrangement of the top point of the subprocess ellipse symbols within the outer 2334
process ellipse shall indicate the nominal execution sequence of the subprocesses within the context of the 2335
process. 2336

Analogous to process in-zooming, object in-zooming shall expose constituent objects as parts of the in-2337
zoomed object and possibly interim processes that are in-zoomed object operations within the scope of the in-2338
zoomed object context. Unlike in-zooming a process, in-zooming an object does not result in a transfer of 2339
execution control. The consequence of new-diagram object in-zooming is a context shift from the object as 2340
part of a larger OPD context to the object as the entire OPD context in which the constituent parts of the 2341
object are exposed and spatially or logically ordered. 2342

Graphically, the rectangle of the in-zoomed object enlarges to accommodate the symbols for the refinees, and 2343
the links amongst them. The arrangement of the object rectangles within the context of the in-zoomed object 2344
enlarged rectangle shall indicate spatial arrangement or logical order of the objects. This enables ordered 2345
enumeration of data, such as in a vector or a matrix. 2346

The corresponding object in-zoom OPL sentence shall be: Object zooms into Subobject A, Subobject B, 2347
and Subobject C, in that sequence. 2348

EXAMPLE 1 Figure 46 depicts abstract Processing in SD, the System Diagram, and details of Processing in SD1 after 2349
zooming into Processing, showing its two subprocesses. 2350

SD SD1 2351

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 85

Agent handles Processing. Processing requires Instrument. 2352
Processing requires Instrument. Processing affects Affectee. 2353
Processing consumes Consumee. Processing zooms into A Subprocessing and B Subprocessing in that 2354
Processing affects Affectee. sequence. 2355
Processing yields Resultee. Agent handles A Subprocessing. 2356
 A Subprocessing consumes Consumee. 2357
 B Subprocessing yields Resultee. 2358

Figure 46 — New-diagram in-zooming generic example 2359

EXAMPLE 2 Figure 47 depicts the Check-Based Paying process of Figure 29 with in-zooming to expose the sequence 2360
of subprocesses and the allocation of links from the process to its subprocesses. 2361

 2362

Check exhibits Keeper. 2363
Check can be blank, signed, endorsed, or cashed & cancelled. 2364
State blank of Check is initial. 2365
State cashed & cancelled of Check is final. 2366
Keeper can be payer, payee, or financial institution. 2367
State payer of Keeper is initial and final. 2368
Payer Keeper relates to Payer. 2369
Payee Keeper relates to Payee. 2370
Financial institution Keeper relates to Bank. 2371
Check-Based Paying zooms into Writing & Signing, Delivering & Accepting, Endorsing & Submitting, and 2372

Cashing & Cancelling in that sequence. 2373
Payer handles Writing & Signing and Delivering & Accepting. 2374
Payee handles Delivering & Accepting and Endorsing & Submitting. 2375
Bank handles Cashing & Cancelling. 2376
Writing & Signing changes Check from blank to signed. 2377
Delivering & Accepting changes Keeper from payer to payee. 2378
Endorsing & Submitting changes Check from signed to endorsed. 2379
Cashing & Cancelling changes Check from endorsed to cashed & cancelled and Keeper from bank to payer. 2380

Figure 47 — Check-Based Paying process with in-zooming to expose its four sequential subprocesses 2381

NOTE 2 In-zooming expresses process behaviour that is the result of structural links and procedural links indicating a 2382
dynamic transfer of execution control among OPD models. The operational execution context shifts from the process to 2383
the in-zoomed OPD and then back to the process. 2384

ISO/PDPAS 19450

86 © ISO 2014 – All rights reserved

14.2.2 Control (operational) semantics within an in-zoomed process context 2385

14.2.2.1 Implicit invocation link 2386

In-zooming a process shall specify a transfer of execution control to subprocesses at a different extent of 2387
detail. Executing a process with an in-zoomed context shall recursively transfer execution control to the top-2388
most subprocess(es) within that process context, which is in a different OPD in case of new-diagram in-2389
zooming. Execution control shall return to the in-zoomed process after its final enabled subprocess completes. 2390

The implicit invocation link shall be a set of invocation links between a process and an in-zoom subprocess, 2391
two subprocesses within the context of an in-zoomed process, or an in-zoomed subprocess and its process. 2392
Similar to its explicit counterpart, the implicit invocation link shall signify the invocation of a subsequent 2393
process or concurrently beginning processes. 2394

Upon arriving at an in-zoomed process context, execution control shall immediately transfer to the 2395
subprocess(es) with the highest ellipse (oval) top-most point within this process in-zoom context. The implicit 2396
invocation link from a process to its top-most in-zoom subprocess transfers execution control. Along the 2397
process timeline, the completion of a source subprocess immediately invokes the subsequent subprocess(es) 2398
using the implicit invocation link. Upon completion of the subprocess with an ellipse top-most point that is 2399
lowest within this in-zoom context, execution control shall return to the in-zoomed process along the implicit 2400
invocation link. 2401

Since invocation is an event, satisfaction of the precondition for each subprocess is necessary to allow that 2402
subprocess to perform. 2403

When two or more subprocesses have their top-most ellipse points at the same height, then an implicit 2404
invocation link shall initiate each process and they shall start in parallel upon individual precondition 2405
satisfaction. The process that completes last shall initiate the next process or set of parallel subprocesses. 2406

Graphically, no symbol explicitly denotes the implicit invocation link. The top-to-bottom vertical arrangement of 2407
the top-most point of the subprocess ellipse symbols within the context of the in-zoomed process shall denote 2408
an implicit invocation link between successive subprocesses in that arrangement. 2409

The syntax of an implicit invocation link OPL sentence shall be: Process zooms into Subprocess A and 2410
Subprocess B, in that sequence. 2411

EXAMPLE In the OPD on the left hand side of Figure 48, Cleaning invokes Coating, so Cleaning affects Product 2412
first and then Coating affects Product. The invocation link dictates this process sequence. In the equivalent OPD on the 2413
right hand side of Figure 48, Finishing zooms into Cleaning and Coating, with the former's ellipse top point above the 2414
latter's, so when Finishing starts, execution control immediately transfers to Cleaning, and when Cleaning ends, the 2415
implicit invocation link invokes Coating. The two OPDs are semantically equivalent, except that the one on the left does 2416
not have Finishing as an enclosing context, making it less expressive from a system viewpoint while using more graphical 2417
elements. 2418

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 87

Cleaning affects Product.

Cleaning invokes Coating.

Coating affects Product.

Finishing affects Product.

Finishing zooms into Cleaning and Coating, in

that sequence.

Figure 48 — Invocation link (left) and implicit invocation link (right) 2419

14.2.2.2 Implicit parallel invocation link set 2420

Graphically, when the ellipse top points of two or more subprocesses within the scope of an in-zoomed 2421
process are at the same height (with possible allowable tolerance), these subprocesses shall begin in parallel, 2422
subject to precondition satisfaction for both. In this situation, there is a set of implicit invocation links from the 2423
source process of the implicit invocation link to each one of the parallel processes. 2424

The heights of the enclosed subprocesses' ellipse top points induce a partial order among these 2425
subprocesses. Subprocesses whose ellipse top points are at the same height start in parallel. When the last 2426
one of these subprocesses ends, i.e. process synchronization occurs, execution control shall attempt to 2427
invoke the next subprocess. If there are two or more subprocesses with a lower ellipse top point at the same 2428
height, the execution control invokes them in parallel. If there are no more subprocesses to invoke, execution 2429
control returns to the in-zoomed refineable process. 2430

The syntax of the implicit parallel invocation link OPL sentence shall be: Process zooms into parallel 2431
Subprocess A and Subprocess B. 2432

 2433

 2434

Processing zooms into A, parallel B and C, D, and parallel E, F, G, in that sequence. 2435

 Figure 49 — Partial subprocesses order and implicit parallel invocation link set 2436

EXAMPLE Figure 49 shows subprocesses with the following partial order: A, (B, C), D, (E, F, G). B and C start upon 2437
completion of A. D starts upon completion of the longer process from among B and C. E, F, and G start upon completion 2438
of D. Execution control returns to Processing upon completion of the longer process from among E, F, and G. 2439

ISO/PDPAS 19450

88 © ISO 2014 – All rights reserved

14.2.2.3 Implicit invocation link summary 2440

Table 24 — Implicit invocation link summary 2441

Name Semantics Sample OPD & OPL Source Destination

Implicit
invocation
link

Upon
subprocess
completion
within the
context of an
in-zoomed
process, the
subprocess
immediately
invokes the
one(s) below
it. Product Terminating zooms into

Product Finishing and Product
Shipping, in that sequence.

Initiating
process,
whose ellipse
top point is
above the
initiated
process

Initiated
process,
whose
ellipse top
point is
below the
ellipse top
point of the
initiating
process

Parallel
Implicit
invocation
link set

Top:
Subprocesses
A and B
initiate in
parallel as
soon as
Processing
starts.

Bottom:

Subprocesses
B and C
initiate in
parallel as
soon as
subprocess A
ends.

Processing zooms into parallel A
and B.

Processing zooms into A and parallel
B and C, in that sequence.

Initiating
process,
whose ellipse
top point is
above the set
of initiated
processes,
whose ellipse
top points are
at the same
height (within
a pre-
determined
tolerance).

A set of
initiated
processes,
whose
ellipse top
points are at
the same
height (within
tolerance)
and below
the initiating
process
ellipse top
point

 2442

14.2.2.4 Link distribution across context 2443

14.2.2.4.1 Semantics of link distribution 2444

Graphically, a procedural link attached to the contour of an in-zoomed process has distributive semantics. 2445
Leaving a link attached to the contour of the in-zoomed process shall mean that the link is distributed and 2446
attached to each one of the subprocesses. The contour of the in-zoomed process has semantics analogous to 2447
that of algebraic parentheses following a multiplication symbol, which distribute the multiplication operator to 2448
the expressions inside the parentheses. 2449

EXAMPLE 1 In Figure 50, the OPDs on the left and right are equivalent, but the one on the left is clearer and less 2450
cluttered. An agent link from A to P means that A handles the subprocesses P1, P2, and P3. An instrument link from B to 2451
P means that the subprocesses P1, P2, and P3 require B. Analogously in algebra, suppose the agent (or instrument) link 2452
was a multiplication operator, A was a multiplier and in-zooming was addition, such that P = P1 + P2 + P3, and P was a 2453
multiplicand, then A*P = A*(P1 + P2 + P3) = A*P1 + A*P2 + A*P3. 2454

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 89

 2455

A handles P. P zooms into P1, P2, and P3, in that sequence. 2456
P requires B. A handles P1, P2, and P3. 2457
P zooms into P1, P2, and P3, in that sequence. P1, P2, and P3 require B 2458

Figure 50 — In-zooming link distribution 2459

If an enabler connects to the outer contour of an in-zoomed contour it shall connect to at least one of its 2460
subprocesses. Consumption and result links shall not be attached to the outer contour of an in-zoomed 2461
process because this violates temporal logical conditions. With a distributed consumption link, an attempt 2462
would be made to consume an already-consumed object by a subprocesses that is not the first to perform. 2463
Similarly, a distributed result link would attempt to create an already existing object instance. 2464

NOTE 1 The modeller needs to be careful when more than one process creates the same object, i.e. more than one 2465
operational instance of the object exists, or more than one process affect or consume the same object. OPM modelling 2466
tools need to track the number of operational instances of an object. 2467

EXAMPLE 2 In Figure 51 the OPD on the left contains invalid consumption and result links, as annotated in the OPL. 2468
The consumption link gives rise to the OPL sentence "P consumes C." Applying link distribution, the consequence is the 2469
three OPL sentences "P1 consumes C.", "P2 consumes C.", and "P3 consumes C.". However, since P1 consumes C first 2470
according to its temporal order, the same instance of C does not exist when P2 or P3 performs and therefore P2 and P3 2471
cannot consume C again. Similarly, the same operational instance of B results only once. The OPD on the right depicts 2472
validity links by specifying which of the subprocesses of P consumes C (P1) and which one yields B (P2). 2473

A handles P. A handles P. 2474
P requires D. P requires D. 2475
P zooms into P1, P2, and P3, in that sequence. P zooms into P1, P2, and P3, in that sequence. 2476
P consumes C. – NOT VALID! P1 consumes C. 2477
P yields B. – NOT VALID! P2 yields B. 2478
P3 affects B. P3 affects B. 2479

 2480
Figure 51 — Link distribution restriction for consumption and result links 2481

Since attaching a consumption or result link to an in-zoomed process is invalid, when a process is in-zoomed, 2482
all the consumption and result links that were attached to it shall be attached initially or by default to its first 2483
subprocess. 2484

ISO/PDPAS 19450

90 © ISO 2014 – All rights reserved

NOTE 2 A modelling tool should automatically establish default semantics, which the modeller may modify. 2485

EXAMPLE 3 In Figure 51 as soon as the modeller in-zooms P and inserts P1 into its context, the destination end of the 2486
consumption link from C migrates from P to P1. Similarly, the source end of the result link to B also migrates from P to P1. 2487
When the modeller adds P2, the modeller may migrate the destination end of the consumption link and/or the source end 2488
of the result link from P1 to P2, as Figure 51 shows. 2489

14.2.2.4.2 Event link constraint 2490

An event link shall not cross the boundary of an in-zoomed process from the outside of that process to initiate 2491
any one of its subprocesses at any level, because this amounts to an attempt to interfere with the prescribed 2492
temporal order of the synchronous in-zoomed process. 2493

If the skipped process is within an in-zoom context and there is a subsequent process in this context, 2494
execution control initiates that process, otherwise execution control transfers back to the in-zoomed process. 2495

14.2.2.4.3 Split state-specified transforming links 2496

When a process that changes an object from an input state to an output state is in-zoomed, the OPD, either 2497
in-diagram or new-diagram, becomes underspecified. To restore specification, the modeller shall attach both 2498
the state-specified input link and the state-specified output link to one of the subprocesses in a temporally-2499
feasible manner. Splitting the input-output specified link pair in two shall signify the split state-specified 2500
transforming link pair. 2501

Graphically, two links to an object with two or more states connecting across a process contour to different 2502
subprocesses with one state-specified input link and one state-specified output link shall denote the split state-2503
specified transforming link. 2504

EXAMPLE 1 In Figure 52 the OPD in the middle is underspecified because P1 or P2 could each change A from s1 to 2505
s2, or P1 could change A from s1 and P2 could change A to s2. The OPD on the right models this last case, giving rise to 2506
a new split input link from s1 of A to P1 and a new split output link from P2 to s2. 2507

 2508

A can be s1 or s2. A can be s1 or s2. A can be s1 or s2. 2509
P changes A from s1 to s2. P zooms into P1 and P2, P zooms into P1 and P2, 2510

in that sequence. in that sequence. 2511
P changes A from s1 to s2. P1 changes A from s1. 2512
 – UNDERSPECIFIED! P2 changes A to s2. 2513

Figure 52 — Split state-specified transforming link to resolve under specification 2514

 2515

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 91

Table 25 - Split input-output specified effect link pair 2516

Name Semantics Sample OPD & OPL Source Destination

Split input-
output specified
effect link pair

The top arrow:
split input-
specified effect
link

The bottom arrow:
split output-
specified effect
link

An early subprocess of
an in-zoomed process
takes an object out of its
input state.

A late subprocess of the
same in-zoomed
process changes the
object to be in its output
state.

P1 changes A from s1.
P2 changes A to s2.

The top arrow:
Input state of
an affected
object

The bottom
arrow: Late
subprocess of
an in-zoomed
process

The top arrow:
Early
subprocess of
an in-zoomed
process

The bottom
arrow: Output
state of the
affected object

 2517

NOTE 1 There are no control-modified versions of the split input-specified effect link. 2518

NOTE 2 An object may have the role of an instrument in an abstract OPD and a transformee in another descendent, 2519
more detailed and concrete OPD. At the abstract OPD, the process does not appear to affect the object, because the 2520
object's initial state is the same as its final state. Therefore, at the abstract OPD the object is an instrument, as indicated 2521
by an instrument link. However, at a descendent, more concrete OPD, that same process does appear to change the state 2522
of that object from the initial state and then back to the initial state. 2523

EXAMPLE 2 In Figure 53 the left System Diagram (SD: Dish Washing System), a Dishwasher object is an 2524
instrument to Dish Washing process, since no change in state of the Dishwasher is visible at that extent of abstraction. 2525
In the descendent OPD (SD1: Dish Washing in-zoomed), Dish Washing zooms into Loading (of a dirty Dish Set), 2526
Cleaning (which changes Dish Set from dirty to clean), and Unloading (of a clean Dish Set). Loading changes the 2527
state of Dishwasher from empty to loaded, while Unloading changes it back from loaded to empty, so empty is both 2528
the initial and final state. While the Dishwasher is an instrument in the System Diagram, at the more detailed descendent 2529
OPD, the Dishwasher is an affectee—it becomes loaded and then empty again. The only effect visible in the System 2530
Diagram is the effect on Dish Set. 2531

SD: Dish Washing System

SD1: Dish Washing in-zoomed

ISO/PDPAS 19450

92 © ISO 2014 – All rights reserved

Household User handles Dish Washing.

Dish Washing requires Dishwasher.

Dish Washing consumes Soap.

Dish Washing affects Dish Set.

Dish Washer consists of Soap Compartment and other parts.

Dishwasher can be empty or loaded.

 State empty of Dishwasher is initial and final.

 Soap Compartment can be empty or loaded.

 State empty of Soap Compartment is initial.

Dish Set exhibits Cleanliness.

 Cleanliness of Dish Set can be dirty or clean.

 State dirty of Cleanliness of Dish Set is initial.

 State clean of Cleanliness of Dish Set is final.

Household User handles Dish Washing.

Dish Washing zooms into Dish Loading, Detergent Inserting, Dish Cleaning & Drying,

and Dish Unloading, in that sequence.

 Dish Loading changes Dishwasher from empty to loaded.

 Detergent Inserting requires Soap.

 Detergent Inserting changes Soap Compartment from empty to loaded.

 Dish Cleaning & Drying requires Dishwasher.

 Dish Cleaning & Drying consumes Soap.

 Dish Cleaning & Drying changes Cleanliness of Dish Set from dirty to clean.

 Dish Unloading changes Dishwasher from loaded to empty.

Figure 53 — Role of abstraction with split state transforming links 2532

14.2.2.4.4 Operational instances of involved object set 2533

As a consequence of link distribution, the following constraints shall apply to operational instances of 2534
transformees: 2535

 each consumee operational instance in the preprocess object set of a process shall cease to exist at the 2536
beginning of the most detailed subprocess of that process, which consumes the operational instance, and 2537
the operational instance is not in the postprocess object set of that process; 2538

 each affectee operational instance in the preprocess object set of a process that changes that operational 2539
instance as a consequence of the process performance shall exit from its input state, the state from which 2540
it changes, at the beginning of the most detailed subprocess that changes the affectee; 2541

 each affectee operational instance in the postprocess object set of a process that changes that 2542
operational instance as a consequence of the process performance shall enter its output state at the 2543
completion of the most detailed subprocess that changes the affectee; and, 2544

 each resultee operational instance in the postprocess object set of a process shall begin existence at the 2545
completion of the most detailed subprocess that yields the resultee operational instance and the 2546
operational instance is not in the preprocess object set of that process. 2547

NOTE 1 A stateful object B for which the execution of process P has the effect of changing the state of B, exits from the 2548
input state at the beginning of the most detailed subprocess of P that changes B, and enters the output state at the end of 2549
the same subprocess of P or some subsequent subprocess of P. Since process P execution takes a positive amount of 2550
time, that object B is in transition between states, from its input state to its output state: it has left its input state but has not 2551
yet arrived at its output state. 2552

14.2.2.5 Synchronous vs. asynchronous process refinement 2553

Since the aggregation-participation fundamental structural relation does not prescribe any "partial order" of 2554
process performance, the modelling of synchronous process refinement shall use in-zooming. 2555

EXAMPLE 1 The system in Figure 53 is synchronous: there is a fixed, well-defined order of each subprocess within 2556
the in-zoom context of Dish Washing. 2557

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 93

The modelling of asynchronous process refinement shall use the aggregation-participation fundamental 2558
structural link either through in-diagram aggregation unfolding or as a new-diagram aggregation unfolding of 2559
the process. 2560

EXAMPLE 2 Figure 54 depicts a portion of a Home Safety System that carries out the function Home Safety 2561
Maintaining, which includes the subprocesses Burglary Handling, Fire Protecting, and Earthquake Alarming. Since 2562
the order of these three subprocesses is unknown, the OPD uses in-diagram aggregation unfolding with an aggregation-2563
participation link from this function rather than an in-zoomed version of Home Safety Maintaining. Home Safety 2564
Maintaining in-zooms to a recurring systemic process, Monitoring & Detecting, for which Detection Module is an instrument 2565
and Threat Appearing is an environmental process. 2566

 2567

Home Safety Maintaining consists of Burglary Handling, Fire Protecting, and Earthquake Alarming. 2568
Detection Module exhibits Detection Treat. 2569
Detection Treat can be burglary, fire, or earthquake. 2570
Burglary Detected Threat initiates Burglary Handling, which requires burglary Detected Threat. 2571
Fire Detected Threat initiates Fire Protecting, which requires fire Detected Threat. 2572
Earthquake Detected Threat initiates Earthquake Alarming, which requires earthquake Detected Threat 2573

Figure 54 — Home Safety Maintaining is an asynchronous system 2574

14.2.2.6 Expressing the contextual texture of a system 2575

14.2.2.6.1 Navigating the contexts of a system 2576

14.2.2.6.1.1 The OPD process tree 2577

An OPD process tree, also called OPD tree, shall be a directed tree graph with root of SD, the System 2578
Diagram, and the other OPDs as nodes with their OPD labels. The directed edges of an OPD tree shall have 2579
labels with each edge pointing from the parent OPD, which contains the refineable element, to a child OPD 2580
containing refinees, which elaborates a process in the parent OPD via new-diagram in-zooming for 2581
synchronous subprocesses or new-diagram aggregation unfolding for asynchronous subprocesses. 2582

14.2.2.6.1.2 The OPD object tree 2583

Unlike the OPD process tree that has a single root, the OPD object tree is more like a forest of many trees, 2584
each stemming from a distinct refineable object that unfolds or in-zooms to reveal detail. Rather than 2585
identifying the possible flow of execution control found in the OPD process tree, the OPD object tree shall 2586
encapsulate the information about an object as a hierarchic structure. The system execution should maintain 2587
dependencies among OPD object tree elements and between OPD object trees. 2588

NOTE OPM tools provide rules for model construction that enforce the maintenance of dependencies during model 2589
creation. 2590

ISO/PDPAS 19450

94 © ISO 2014 – All rights reserved

14.2.2.6.1.3 OPM diagram labels 2591

The OPM system name shall be the name of the OPM model that specifies the system. An OPD name is the 2592
name that identifies each OPD in the OPD process tree. 2593

SD shall be the label designation for the root OPD in the OPD tree hierarchy. This SD occupies tier 0 in the 2594
OPD hierarchy tree and shall have exactly one OPD; higher numbered tiers, i.e. those corresponding to 2595
successive refinements, may have one or more OPDs. SD shall contain one and only one systemic process, 2596
which represents the overarching system function that delivers functional value to stakeholders. SD may 2597
contain one or more environmental processes. 2598

14.2.2.6.1.4 OPD process tree edge label 2599

Each edge in the OPD process tree shall have a label. The label shall express a refinement relation that 2600
corresponds to the implicit invocation link or unfolding relation. Considering each OPD to be an object and the 2601
entire OPD process tree to be a single OPD, each edge shall be a unidirectional tagged structural link with a 2602
tag of "is refined by in-zooming <Refineable Name> in ", or "is refined by unfolding <Refineable Name> in ". 2603

An OPD refinement OPL sentence shall be an OPL sentence describing the refinement relation between a 2604
refineable present in a tierN OPD and the tierN+1 refinement OPD. 2605

The syntax of an in-zoomed OPD refinement OPL sentence shall be: "<TierN OPD label> is refined by in-2606
zooming <Refineable Process Name> in "<TierN+1 OPD Label>." 2607

The syntax of an unfolded OPD refinement OPL sentence shall be: "<TierN OPD label> is refined by unfolding 2608
<Refineable Process Name> in "<TierN+1 OPD Label>." 2609

14.2.2.6.1.5 System map and model views 2610

A system map shall be an OPD process tree that explicitly depicts the element (things and links) content of 2611
each OPD (node). Because the system map may become very large and unwieldy, mechanisms shall allow 2612
access to model content and the associations among elements. These mechanisms, collectively referred to as 2613
model views consisting of model facts, shall include a list of all things and the OPDs in which they appear, the 2614
OPD process tree, and the OPD object trees. 2615

In addition, an OPM tool set should provide a mechanism for creating views, as OPDs with associated OPL 2616
sentences, of objects and processes that meet specific criteria. These views may include the critical path for 2617
minimal system execution duration, or a list of system agents and instruments, or an OPD of objects and 2618
processes involved in a specific kind of link or set of links. 2619

EXAMPLE An OPD can be created by (1) refining (unfolding or in-zooming) an object or (2) collecting and presenting 2620
in a new OPD things that appear in various OPDs for expressing assignment of system sub-functions to system-module 2621
objects. 2622

14.2.2.6.2 Whole System OPL specification 2623

An OPL paragraph shall be the collection of OPL sentences that together specify in text the semantic 2624
expression of the corresponding OPD. 2625

NOTE 1 An OPL paragraph name, using the OPD name, may precede the first OPL sentence of each OPL paragraph. 2626

An OPM system model shall be the collection of successive OPL paragraphs corresponding to the collection 2627
of OPDs present. 2628

An entire OPL specification of a system should begin with an OPL specification starting title. The OPL 2629
paragraphs follow the title in successive blocks, each beginning on a new line with the corresponding OPD 2630
and the OPL paragraph sentences following. 2631

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 95

NOTE 2 The sequence of OPL paragraphs should begin with the SD and generally follow breadth-first, unless the 2632
modeller identifies a different sequence. 2633

EXAMPLE Table 26 contains the entire OPL specification of the OPM model in Figure 53. 2634

Table 26 — Whole system OPL for Dish Washing System 2635

OPL specification of Dish Washing System

SD: Dish Washing System

Household User handles Dish Washing.

Dish Washing requires Dishwasher.

Dish Washing consumes Soap.

Dish Washing affects Dish Set.

SD is refined by in-zooming Dish Washing in SD1.

SD1: Dish Washing in-zoomed

Dish Washer consists of Soap Compartment and other parts.

Dishwasher can be empty or loaded.

 State empty of Dishwasher is initial and final.

 Soap Compartment can be empty or loaded.

 State empty of Soap Compartment is initial.

Dish Set exhibits Cleanliness.

 Cleanliness of Dish Set can be dirty or clean.

 State dirty of Cleanliness of Dish Set is initial.

 State clean of Cleanliness of Dish Set is final.

Household User handles Dish Washing.

Dish Washing zooms into Dish Loading, Detergent Inserting, Dish Cleaning & Drying, and Dish Unloading, in that sequence.

 Dish Loading changes Dishwasher from empty to loaded.

 Detergent Inserting requires Soap.

 Detergent Inserting changes Soap Compartment from empty to loaded.

 Dish Cleaning & Drying requires Dishwasher.

 Dish Cleaning & Drying consumes Soap.

 Dish Cleaning & Drying changes Cleanliness of Dish Set from dirty to clean.

 Dish Unloading changes Dishwasher from loaded to empty.

End of OPL specification of Dish Washing System

 2636

14.2.3 OPM fact consistency principle 2637

The fact consistency OPM principle stipulates that: 2638

(1) a model fact appearing in one OPD shall be true for the entire collection of OPDs within the 2639
OPM system model, and 2640

(2) no OPD in the OPD process tree or an OPD object tree shall contain a model fact that 2641
contradicts a model fact in the same OPD or in another OPD. 2642

A fact in one OPD may be a refinement or an abstraction of a fact in a different OPD within the same OPM 2643
system model. 2644

NOTE This principle does not preclude the possibility of representing any model element any number of times in as 2645
many OPDs as the modeller wishes. Since a link cannot exist without the things it links, if a link is present then the two 2646
things on its ends need to be present as well. 2647

EXAMPLE It is not possible for one OPD to express the fact that "P yields A." and for the same or another OPD in the 2648
same OPD tree to express the fact that "P consumes A." However, it is permissible for one OPD to express the fact that "P 2649
affects A." and for another OPD in the same OPD tree to express the fact that "P changes A from s1 to s2." because the 2650

latter fact is a refinement, not a contradiction of the former. 2651

ISO/PDPAS 19450

96 © ISO 2014 – All rights reserved

14.2.4 Abstraction ambiguity resolution for procedural links 2652

14.2.4.1 Abstraction and procedural link precedence 2653

Out-zooming abstracts a collection of related things, the refinees and associated links, into a refineable. 2654
When the modeller performs the abstraction, the procedural links between refinees and things that are not 2655
refinees, shall migrate to the context of the OPD that depicts the refineable. This migration may cause a 2656
situation in which two or more procedural links of different kinds link an object and a process. According to the 2657
procedural link uniqueness OPM principle (see 8.1.2) an object or an object state shall link to a process by 2658
only one procedural link. To sustain this principle, the modeller shall resolve the conflict between candidate 2659
links to determine which remains or which new link replaces the candidates in the abstract OPD. The loss of 2660
detail information is consistent with the notion of abstraction. 2661

EXAMPLE Figure 55 demonstrates the problem of procedural link abstraction. In SD1, the result link from P1 to B is 2662
more significant than the effect link from P2 to B, so when SD1 is out-zoomed to SD, the result link prevails. 2663

 2664

Figure 55 — Abstracting procedural links 2665

Semantic strength and link precedence are two concepts to guide the determination of which links to retain 2666
and which to hide when an OPD is out-zoomed or folded. 2667

Semantic strength of a procedural link shall be the significance of the information that the link carries. 2668
Information concerning a change in existence, either creation or elimination, is more significant than 2669
information about change to an existing thing. The relative semantic strength of the two conflicting procedural 2670
links shall determine link precedence. When two or more procedural links compete to remain represented in 2671
an OPD abstraction of refinement, the link that prevails is the one with the highest semantic strength. 2672

NOTE The concept of link precedence allows the modeller to resolve conflicts in representation amongst OPD contexts 2673
and guides the modeller in establishing appropriate procedural links at the various extents of detail. 2674

14.2.4.1.1 Precedence among transforming links 2675

Transforming links include result, effect, and consumption links. Since object creation and consumption are 2676
semantically stronger, i.e. they have higher semantic strength than affecting the object by changing its state, 2677
result and consumption links have precedence over effect links, as demonstrated in Figure 55. However, since 2678
result and consumption links are semantically equivalent, when they compete, the prevailing link shall be the 2679
effect link because the effect link allows both creation and elimination as effects. 2680

Table 27 shows transforming link precedence: P in the upper left corner is out-zoomed. The column headings 2681
show the three possible transforming links between P1 and B, while the row headings show the three possible 2682
links between P2 and B. The table cells show the prevailing link between B and P after P is out-zoomed. Cells 2683
marked as "Invalid" indicate the impossibility of the combination. For example, inspecting the centre cell, if P1 2684
consumes B, B no longer exists when P2 later tries to consume it again. 2685

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 97

Table 27 – Transforming link precedence 2686

Zoomed-out process P:

Invalid

Invalid

Invalid

Invalid

 2687

14.2.4.1.2 Precedence among transforming and enabling links 2688

Transforming links are semantically stronger than enabling links, because transforming links denote creation, 2689
consumption, or change of the linked object, while the enabling links only denote enablement. A transforming 2690
link shall have precedence over an enabling link as shown in Figure 56. 2691

Within the enabling links, an agent link shall have precedence over an instrument link because in artificial 2692
systems the humans are central to the process, they must ensure the system’s proper operation. In addition, 2693
wherever there is human interaction, an interface should exist and this information should be available to the 2694
modeller of a refineable so that they can plan accordingly. 2695

 2696

Figure 56 — Link precedence for transforming and enabling links 2697

Summarizing the semantic strength of the procedural non-control links, the primary order of precedence shall 2698
be: consumption = result > effect > agent > instrument, where the = and > refer to the semantic strength of the 2699
links. State-specified links shall have higher precedence than basic links that do not specify states. 2700

14.2.4.1.3 Secondary precedence among same-kind non-control links and control links 2701

Each non-control link kind has a corresponding event and condition link that are useful for determining finer, 2702
secondary precedence distinction within each kind of procedural link. The relative semantic strength for the 2703
secondary order of precedence within each member of the primary order of precedence shall have the event 2704
link of stronger semantic strength than its corresponding non-control link, while the condition link shall have a 2705
weaker semantic strength than its corresponding non-control link. 2706

ISO/PDPAS 19450

98 © ISO 2014 – All rights reserved

The semantic strength of an event link shall be stronger than the semantic strength of its corresponding non-2707
control link because any event link has semantics of both its corresponding non-control link plus the event 2708
capable of initiating a process. The semantic strength of a conditional link shall be weaker than the semantic 2709
strength of its corresponding non-control link because the condition modifier weakens the precondition 2710
satisfaction criteria for the connecting process. 2711

14.2.4.1.4 Summary of the procedural links semantic strength 2712

Summarizing the semantic strength of the procedural links based on the distinction between primary and 2713
secondary precedence, the complete order of precedence shall be: 2714

1. consumption event > consumption 2715

2. consumption = result 2716

3. result > consumption condition 2717

4. consumption condition > effect event 2718

5. effect event > effect 2719

6. effect > effect condition 2720

7. effect condition > agent event 2721

8. agent event > agent 2722

9. agent > agent condition 2723

10. agent condition > instrument event 2724

11. instrument event > instrument 2725

12. instrument > instrument condition 2726

 2727

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 99

Annex A 2728

(normative) 2729

 2730

OPL Formal syntax in EBNF 2731

A.1 Introduction 2732

Object-Process Language (OPL) is a subset of English that shall express textually the OPM specification that 2733
the OPD set expresses graphically. 2734

OPL is a dual-purpose language. First, it serves domain experts and system architects engaged in analyzing 2735
and designing a system, such as an electronic commerce system or a Web-based enterprise resource 2736
planning system. Second, it provides a firm basis for automatically generating the designed application. 2737

OPL is the textual counterpart of the graphic OPM system specification, corresponding to the diagrammatic 2738
description in the OPD set. OPL shall be an automatically generated textual description of the system in a 2739
subset of natural English. Devoid of the idiosyncrasies and excessive cryptic details that characterize 2740
programming languages, OPL sentences shall be understandable to people without technical or programming 2741
experience. 2742

Because of the extensive variety in model expression enabled by OPM, the OPL syntax expression in EBNF 2743
below is necessarily incomplete, e.g. the opportunities for statements regarding probability in 12.7 and 2744
execution path management in 13 are lacking EBNF expressions. The enormous variety of participation 2745

constraints, especially those expressible as mathematical formulas, do not have formal specification in Annex 2746
A. 2747

A.2 OPL in the context of OPD 2748

This Annex provides a formal specification of the Object-Process Language conforming to ISO 19477:1996, 2749
which results from the various OPD graphical constructions found in Clause 7 through Clause 14. To aid the 2750
reader, this Annex references the corresponding OPD sub-clauses where appropriate and Annex headings 2751
help to partition the EBNF according to syntactic forms for modelling elements.. 2752

NOTE With appropriate use of the graph grammar described in Annex C, and the symbols described in Annex A, 2753
sentences constructed in OPL are translatable into OPD figures. 2754

A.3 Preliminaries 2755

A.3.1 EBNF syntax 2756

The following syntax uses the notation of EBNF as described in ISO 14977:19961. The normal character 2757
representing each operator of Extended BNF and its implied precedence shall be (highest precedence at the 2758
top): 2759

* repetition-symbol 2760
- except-symbol 2761
, concatenate-symbol 2762
| definition-separator-symbol 2763
= defining-symbol 2764
; terminator-symbol 2765

1 ISO 14977 is a freely available standard that can be downloaded free of charge from
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm

http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm

ISO/PDPAS 19450

100 © ISO 2014 – All rights reserved

 2766
The normal precedence shall be over-ridden by the following bracket pairs: 2767
 2768

‘ first-quote-symbol ’ 2769
“ second-quote-symbol ” 2770
(* start-comment-symbol end-comment-symbol *) 2771
(start-group-symbol end-group-symbol) 2772
[start-option-symbol end-option-symbol] 2773
{ start-repeat-symbol end-repeat-symbol } 2774
? special-sequence-symbol ? 2775

 2776
NOTE 1 A space character enclosed in quotes as in “ “ denotes that a literal space character is required, otherwise 2777
space characters and line endings (so-called white space) have no significance. 2778

NOTE 2 A meta identifier can occur on both the left and right sides of a rule, so enabling recursion. 2779

NOTE 3 The first-quote-symbol identifies syntactic elements of OPL variable labels, which are the names and values 2780
appearing in OPD graphical models and OPL sentences. These particular syntactic elements are found only in the Base 2781
declarations subclause below. 2782

NOTE 4 The second-quote-symbol identifies syntactic elements of OPL constants, which are words and phrases 2783
appearing in OPL sentences as interpretations of the graphical element configurations and link tags in an OPD. 2784

NOTE 5 Beginning with A.3.2 and through the remainder of Annex A, all text, except headings, conform to ISO 14977. 2785

A.3.2 Base declarations 2786

(* Region OPL EBNF *) 2787
(* Region Base declarations: The following base declarations define certain strings: *) 2788
 2789
non zero digit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ ; 2790
decimal digit = ‘0’ | non zero digit ; 2791
positive integer = non zero digit, {decimal digit} ; 2792
positive real number = {decimal digit}, ".", decimal digit, {decimal digit} ; 2793
upper case letter = ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ 2794
| ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ ; 2795
lower case letter = ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ 2796
| ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’ ; 2797
letter = upper case letter | lower case letter ; 2798
string character = letter | decimal digit | ‘_’ | ‘-‘ | '&' | ‘/’ | ‘ ‘ ; (* note that a string character can be a space *) 2799
name = letter, {string character} ; (* note that the first character is a letter *) 2800
capitalized word = upper case letter {string character} ; 2801
non capitalized word = lower case letter {string character} ; 2802
non capitalized phrase = non capitalized word, { ' ', (non capitalized word | capitalized word) } ; 2803
type identifier = " boolean" 2804

| " string" 2805
| number type 2806
| " enumerated" ; 2807

prefix = " unsigned" ; 2808
number type = [prefix], " integer" 2809

| " float" 2810
| " double" 2811
| " short" 2812
| " long" ; 2813

participation limit = positive integer | positive real number ; 2814
participation constraint = lower single 2815

| upper single 2816
| lower plural 2817
| upper plural 2818
| ("0" | participation limit, [" to ", participation limit]) ; 2819

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 101

expression constraint = " where ", name, ((logical operation, value name) 2820
| (logical begin set, (name | value name), { ", ", [(name | value name)] }, 2821

logical end set)) ; 2822
lower single = "a " | "an " | "an optional " | "at least one " ; 2823
upper single = "A " | "An " | "An optional " | "At least one " ; 2824
lower plural = "optional " | "many " ; 2825
upper plural = "Optional " | "Many " ; 2826
range clause = " is ", value name | " ranges from ", value name, " to ", value name ; 2827
logical operation = "=" | "<" | ">" | "<=" | " >=" ; 2828
logical begin set = " in { " ; 2829
logical end set = " }" ; 2830
 2831
(* participation constraints have many forms of expression and the Base Declarations do not include all of 2832
those forms. *) 2833
 2834
(* Reserved words and symbols found in OPL statements are delimited by second quote symbols *) 2835

(* EndRegion: Base declarations *) 2836

A.3.3 OPL special sequences 2837

(* Region: special sequences – This region defines all special sequences like New Line, Plural objects and 2838
processes *) 2839
 2840
new line = ? application specific character sequence resulting in a line feed followed by return to first character 2841
position on the line ? ; 2842
measurement unit = ? any specified or commonly understood measurement of time, space, quantity, or 2843
quality? ; 2844
value name = ? a number or name appropriate for the associated measurement unit? ; 2845
singular object name = ? capitalized singular noun phrase ? ; (* see 7.1.2 *) 2846
plural object name = ? capitalized plural noun phrase ? ; 2847
singular process name = ? capitalized gerund phrase ? | ? capitalized singular noun phrase ? ; 2848
plural process name = ? capitalized gerund phrase ? | ? capitalized plural noun phrase ? ; (* see 7.2.2 *) 2849
parent OPD = ? OPD from which a new-diagram in-zooming or new diagram unfolding occurs ? ; 2850
child OPD = ? OPD resulting from a new-diagram in-zooming or new diagram unfolding ? ; 2851
max duration time units = ? value of maximum duration in time units for process execution ? ; 2852
min duration time units = ? value of minimum duration in time units for process execution ? ; 2853
 2854

(* EndRegion: Special Sequences *) 2855

A.4 OPL Syntax 2856

A.4.1 OPL document structure 2857

(* Region OPL document *) 2858
 2859
OPL paragraph = OPL sentence, { new line, OPL sentence} ; 2860
OPL sentence = OPL formal sentence, "." ; 2861
OPL formal sentence = thing description sentence 2862

| procedural sentence 2863
| structural sentence 2864
| context management sentence ; 2865

 2866

A.4.2 OPL Identifiers 2867

(* Region: Identifiers – This region defines all identifiers used throughout the grammar *) 2868

object identifier = singular object name, [" in ", measurement unit], [range clause] 2869

ISO/PDPAS 19450

102 © ISO 2014 – All rights reserved

| singular object name, " object", [" in ", measurement unit], [range clause] 2870
| plural object name, [" in ", measurement unit], [range clause] 2871
| plural object name, " objects", [" in ", measurement unit], [range clause] ; 2872

process identifier = singular process name 2873
| singular process name, " process" 2874
| plural process name 2875
| plural process name, " processes" ; 2876

thing identifier = object identifier 2877
| process identifier ; (* see 7.1 and 7.2 *) 2878

state identifier = non capitalized word ; 2879
tag expression = non capitalized phrase ; 2880
 2881
(* EndRegion: Identifiers *) 2882
 2883

A.4.3 OPL lists 2884

(* Region: Lists – This region defines various lists: object list, process list, object with optional state list *) 2885
 2886
process list = process identifier 2887

| process identifier, [{", ", process identifier}], " and ", process identifier ; (* see 12.1 *) 2888
process Or list = process identifier, [{", ", process identifier}], " or ", process identifier ; 2889
process Xor list at beginning = "One of ", process Or list ; 2890
process Xor list at end = "one of ", process Or list ; 2891
 2892
object list = object identifier 2893

| object identifier, [{", ", object identifier}], " and ", object identifier ; (* see 12.1 *) 2894
object with optional state = [state identifier], " ", object identifier ; 2895
(* object with optional state may replace object identifier in many OPL expressions using object identifier *) 2896
object with optional state list = object with optional state 2897

| object with optional state, [{", ", object with optional state}], 2898
" and ", object with optional state ; 2899

 2900
object Or list = object with optional state, [{", ", object with optional state}], " or ", object with optional state ; 2901
 (* see 12.2 *) 2902
object Or list nostates = object identifier, [{", ", object identifier}], " or ", object identifier ; 2903
 2904
object Xor list at beginning = "One of ", object Or list ; 2905
object Xor list at end = "one of ", object Or list ; 2906
object nostates Xor list at end = "one of ", object Or list ; 2907
 2908
state list = state identifier 2909

| state identifier, [{", ", state identifier}], " and ", state identifier ; 2910
state Or list = state identifier, [{", ", state identifier}], " or ", state identifier ; 2911
state Xor list at end = "one of ", state Or list ; 2912
 2913
(* EndRegion: Lists *) 2914
 2915

A.4.4 OPL Thing description 2916

A.4.4.1 Thing description sentence 2917

(* Region: Thing Description – This region defines all thing description sentences *) 2918
 2919
thing description sentence = generic property sentence 2920

| type description sentence 2921
| state description sentence ; 2922

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 103

A.4.4.2 Generic property sentence 2923

generic property sentence = thing identifier, 2924
" is ", [essence], [affiliation], [persistence] ; (* see 7.3.3 *) 2925

essence = "Informatical" | "Physical" ; (* Physical is the non-default value of 2926
Essence, the default value of which is 2927
Informatical. *) 2928

affiliation = "Systemic" | "Environmental" ; (* Environmental is the non-default 2929
value of Affiliation, the default value 2930
of which is Systemic. *) 2931

persistence = "Persistent" | "Transient" ; (* Transient is the non-default value 2932
of Persistence, the default value of 2933
which is Persistent. *) 2934

A.4.4.3 Type description sentence 2935

type description sentence = object identifier, " is of type ", type identifier ; 2936

A.4.4.4 State description sentence 2937

state description sentence = state enum sentence 2938
| initial states sentence 2939
| final states sentence 2940
| default state sentence 2941
| combined state sentence ; (* see 7.3.5 *) 2942

state enum sentence = object identifier, " is ", state identifier 2943
| object identifier, " can be ", 2944

state identifier, [{", ", state identifier}], " and ", state identifier 2945
| object identifier, " can be ", 2946

state identifier, [{", ", state identifier}], " and other states" ; 2947
initial states sentence = single initial states sentence 2948

| multiple initial states sentence ; 2949
single initial states sentence = "State ", state identifier, " of ", object identifier, " is initial" ; 2950
multiple initial states sentence = "States ", state list " of ", object identifier, " are initial" ; 2951
final states sentence = single final state sentence 2952

| multiple final state sentence ; 2953
single final state sentence = "State ", state identifier, " of ", object identifier, " is final" ; 2954
multiple final state sentence = "States ", state list, " of ", object identifier, " are final" ; 2955
default state sentence = "State " state identifier, " of ", object identifier, " is default" ; 2956
combined state sentence = object identifier, {" is initially ", [state identifier | state identifier, 2957

{" and ", state identifier}], " and finally ", state OR list } ; 2958
input state = state identifier ; (* the state or states of the associated object in a process precondition set *) 2959
output state = state identifier ; (* the state or states of the associated object in a process postcondition set *) 2960
 2961
active process identifier = process identifier ; 2962
 2963
(* EndRegion: Thing Description *) 2964
 2965

A.4.5 OPL Procedural sentences 2966

A.4.5.1 Procedural sentnece 2967

(* Region: Procedural sentences. – This region defines all procedural sentences *) 2968
 2969
procedural sentence = transforming sentence 2970

| enabling sentence 2971
| control sentence ; (* see 8.1.1 *) 2972

 2973

ISO/PDPAS 19450

104 © ISO 2014 – All rights reserved

A.4.5.2 OPL Transformations 2974

A.4.5.2.1 Transforming sentence 2975

(* Region: Transforming sentences – This region defines consumption, result, effect and change sentences, 2976
and their variations *) 2977
 2978
transforming sentence = consumption sentence 2979

| result sentence 2980
| effect sentence 2981
| change sentence ; (* see 9.1.1 and 9.3.3 *) 2982

A.4.5.2.2 Consumption sentence 2983

consumption sentence = (process identifier, " consumes ", object with optional state list) 2984
| consumption select sentence ; (* see 9.1.2 *) 2985

consumption select sentence = consumption Or sentence 2986
| consumption Xor sentence ; (* see 12.3 *) 2987

consumption Or sentence = consumption source Or sentence 2988
| consumption destination Or sentence ; 2989

consumption source Or sentence = process identifier, " consumes at least one of ", object Or list ; 2990
consumption destination Or sentence = "At least one of ", process Or list, 2991

" consumes ", object with optional state ; 2992
 2993
consumption Xor sentence = consumption source Xor sentence 2994

| consumption destination Xor sentence ; 2995
consumption source Xor sentence = process identifier, " consumes exactly ", object Xor list at end ; 2996
consumption destination Xor sentence = "Exactly ", process Xor list at beginning, " consumes ", 2997

object with optional state ; 2998

A.4.5.2.3 Result sentence 2999

result sentence = (process identifier, " yields ", object with optional state list) 3000
| result select sentence ; (* see 9.1.3 *) 3001

result select sentence = result Or sentence 3002
| result Xor sentence ; (* see 12.3 *) 3003

result Or sentence = result source Or sentence 3004
| result destination Or sentence ; 3005

result source Or sentence = "At least one of ", process Or list, " yields ", object with optional state ; 3006
result destination Or sentence = process identifier, " yields at least one of ", object Or list ; 3007
result Xor sentence = result source Xor sentence 3008

| result destination Xor sentence ; 3009
result source Xor sentence = "Exactly ", process Xor list at beginning, " yields ", object with optional state ; 3010
result destination Xor sentence = process identifier, " yields exactly ", object Xor list at end ; 3011

A.4.5.2.4 Effect sentence 3012

effect sentence = (process identifier, " affects ", object list) 3013
| effect select sentence ; (* see 9.1.4 *) 3014

effect select sentence = effect Or sentence 3015
| effect Xor sentence ; 3016

effect Or sentence = effect object Or sentence 3017
| effect process Or sentence ; (* see 12.3 *) 3018

effect object Or sentence = process identifier, " affects at least one of ", object Or list Nostates ; 3019
effect process Or sentence = "At least one of ", process Or list, " affects ", object identifier ; 3020
effect Xor sentence = effect object Xor sentence 3021

| effect process Xor sentence ; 3022
effect object Xor sentence = process identifier, " affects exactly ", object nostates Xor list at end ; 3023
effect process Xor sentence = "Exactly ", process Xor list at beginning, " affects ", object identifier ; 3024

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 105

A.4.5.2.5 Change sentence 3025

change sentence = in out specified change sentence 3026
| input specified change sentence 3027
| output specified change sentence ; (* see 9.3.3.1 *) 3028

 3029
in out specified change sentence = (process identifier, " changes ", in out object change list) 3030

| in out specified change select sentence ; (* see 9.3.3.2 *) 3031
in out object change list = in out object change phrase 3032
 | in out object change phrase, [{", ", in out object change phrase}], 3033

" and ", in out object change phrase ; 3034
in out object change phrase = object identifier, " from ", input state, " to ", output state ; 3035
in out specified change select sentence = in out specified change Or sentence 3036

| in out specified change Xor sentence ; 3037
in out specified change Or sentence = (process identifier, " changes ", Or in out object change list) 3038

| (process Or list, " changes ", in out object change phrase) 3039
| in out specified change state Or sentence ; 3040

Or in out object change list = in out object change phrase, [{", ", in out object change phrase}], 3041
" or ", in out object change phrase ; 3042

in out specified change state Or sentence = (process identifier, " changes ", object identifier, 3043
" from ", state Or list, " to ", state identifier) 3044

| (process identifier, " changes ", object identifier, 3045
" from ", state identifier, " to ", state Or list) ; 3046

in out specified change Xor sentence = in out specified change object Xor sentence 3047
| in out specified change process Xor sentence 3048
| in out specified change state Xor sentence ; 3049

in out specified change Object Xor sentence = process identifier, " changes one of ", 3050
Or In out object change list ; 3051

 3052
in out specified change process Xor sentence = process Xor list at beginning, " changes ", 3053

in out object change phrase ; 3054
in out specified change state Xor sentence = (process identifier, " changes ", object identifier, 3055

" from ", state Xor list at end, " to ", state identifier) 3056
| (process identifier, " changes ", object identifier, " from ", state identifier, " to ", 3057

state Xor list at end) ; 3058
 3059
input specified change sentence = (process identifier, " changes ", input object change list) 3060

| input specified change select sentence ; (* see 9.3.3.3 *) 3061
input object change phrase = object identifier, " from ", input state ; 3062
input object change list = input object change phrase 3063

| input object change phrase, [{", ", input object change phrase }], " and ", 3064
input object change phrase ; 3065

input specified change select sentence = input specified change Or sentence 3066
| input specified change Xor sentence ; 3067

input specified change Or sentence = (process identifier, " changes ", Or input object change list) 3068
| (process Or list, " changes ", input object change phrase) 3069
| (process identifier, " changes ", object identifier, " from ", state Or list) ; 3070

Or input object change list = input object change phrase, [{", ", input object change phrase }], " or ", 3071
input object change phrase ; 3072

input specified change Xor sentence = (process identifier, " changes one of ", Or input object change list) 3073
| (process Xor list at beginning, " changes ", input object change phrase) 3074
| (process identifier, " changes ", object identifier, " from ", state Xor list at end) ; 3075

 3076
output specified change sentence = (process identifier, " changes ", output object change list) 3077

| output specified change select sentence ; (* see 9.3.3.4 *) 3078

output object change list = output object change phrase 3079
| output object change phrase, [{", " output object change phrase }], " and ", 3080

output object change phrase ; 3081
output object change phrase = object identifier, " to ", output state ; 3082
output specified change select sentence = output specified change Or sentence 3083

ISO/PDPAS 19450

106 © ISO 2014 – All rights reserved

| output specified change Xor sentence ; 3084
output specified change Or sentence = (process identifier, " changes ", Or output object change list) 3085

| (process Or list, " changes ", output object change list) 3086
| (process identifier, " changes ", object identifier, " to ", state Or list) ; 3087

Or output object change list = output object change phrase, [{", ", output object change phrase }], " or ", 3088
output object change phrase ; 3089

output specified change Xor sentence = (process identifier, " changes one of ", Or output object change list) 3090
| (process Xor list at beginning, " changes ", output object change phrase) 3091
| process identifier, " changes ", object identifier, " to ", state Xor list at end ; 3092

 3093
(* EndRegion: Transforming sentences *) 3094
 3095

A.4.5.3 OPL Enablers 3096

A.4.5.3.1 Enabling sentences 3097

(* Region: Enabling sentences – This region defines Agent and Instrument sentences and their possible 3098
variations *) 3099
 3100
enabling sentence = agent sentence 3101

| instrument sentence ; (* see 9.2.1 *) 3102

A.4.5.3.2 Agent sentence 3103

agent sentence = (object with optional state list, " handle ", process identifier) 3104
| agent select sentence ; (* see 9.2.2 and 12.3 *) 3105
 3106

agent select sentence = agent Or sentence 3107
| agent Xor sentence ; 3108

agent Or sentence = agent source Or sentence 3109
| agent destination Or sentence ; 3110

agent source Or sentence = "At least one of ", object Or list, "handles", process identifier ; 3111
agent destination Or sentence = object with optional state, "handles at least one of ", process Or list ; 3112
agent Xor sentence = agent source Xor sentence 3113

| agent destination Xor sentence ; 3114
agent source Xor sentence = "Exactly ", object Xor list at beginning, " handles ", process identifier ; 3115
agent destination Xor sentence = object with optional state, " handles exactly ", process Xor list at end ; 3116

A.4.5.3.3 Instrument sentence 3117

instrument sentence = (process identifier, " requires ", object with optional state list) 3118
| instrument select sentence ; (* see 9.2.3 and 12.3 *) 3119

 3120
instrument select sentence = instrument Or sentence 3121

| instrument Xor sentence ; 3122
instrument Or sentence = instrument source Or sentence 3123

| instrument destination Or sentence ; 3124
instrument source Or sentence = process identifier, " requires at least one of ", object Or list ; 3125
instrument destination Or sentence = "At least one of ", process Or list, " requires ", object with optional state ; 3126
instrument Xor sentence = instrument source Xor sentence 3127

| instrument destination Xor sentence ; 3128
instrument source Xor sentence = process identifier, " requires exactly ", object Xor list at end ; 3129
instrument destination Xor sentence = "Exactly ", process Xor list at beginning, " requires ", object with 3130
optional state ; 3131
 3132
(* EndRegion: Enabling sentences *) 3133
 3134
 3135

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 107

A.4.5.4 OPL Flow of control 3136

A.4.5.4.1 Control sentence 3137

(* Region : Control sentences – This region defines all sentences related to flow of control in the system *) 3138
 3139
control sentence = event sentence 3140

| condition sentence 3141
| invocation sentence 3142
| exception sentence ; (* see 9.5.1 *) 3143

A.4.5.4.2 Event sentence 3144

event sentence = consumption event sentence 3145
| effect event sentence 3146
| agent event sentence 3147
| instrument event sentence ; (* see 9.5.2 *) 3148

 3149
consumption event sentence = object with optional state, " initiates ", process identifier, 3150

", which consumes ", object identifier ; 3151
 (* see 12.5 and 12.6 for additional syntax for link fans *) 3152
effect event sentence = simple effect event sentence 3153

| in out specified effect event sentence 3154
| input specified effect event sentence 3155
| output specified effect event sentence ; 3156

 3157
simple effect event sentence = object identifier, " initiates ", process identifier, ", which affects ", 3158

object identifier ; 3159
in out specified effect event sentence = input state, object identifier, " initiates ", process identifier, 3160

", which changes ", in out object change phrase ; 3161
input specified effect event sentence = input state, object identifier, " initiates ", process identifier, 3162

", which changes ", object identifier, " from ", input state ; 3163
output specified effect event sentence = object identifier, " in any state initiates ", process identifier, 3164

", which changes ", object identifier, " to ", output state ; 3165
 3166
agent event sentence = object with optional state, " initiates and handles ", process identifier ; 3167
instrument event sentence = object with optional state, " initiates ", process identifier, 3168

 ", which requires " object with optional state ; 3169

A.4.5.4.3 Condition sentence 3170

condition sentence = condition transforming sentence 3171
| condition enabling sentence ; 3172

condition transforming sentence = conditional consumption sentence 3173
 | conditional state specified consumption sentence 3174

| conditional effect sentence 3175
| conditional state specified consumption sentence ; (* see 9.5.3.1 and 9.5.3.3 *) 3176

 3177
conditional consumption sentence = (process identifier, " occurs if ", object identifier, 3178

" exists, in which case ", object identifier, " is consumed, otherwise 3179
", process identifier, " is skipped ") 3180

| ("If ", object identifier, " exists then ", process identifier, " occurs and consumes ", 3181
object identifier, ", otherwise bypass ", process identifier) ; 3182

conditional state specified consumption sentence = (process identifier, " occurs if ", object identifier, 3183
" is ", input state, ", in which case ", object identifier, " is consumed, otherwise 3184
", process identifier, " is skipped ") 3185

| ("If ", input state, object identifier, " exists then ", process identifier, 3186
" occurs and consumes ", object identifier, ", otherwise bypass ", 3187
 process identifier) ; 3188

 3189

ISO/PDPAS 19450

108 © ISO 2014 – All rights reserved

conditional effect sentence = simple conditional effect sentence 3190
| in out specified conditional effect sentence 3191
| input specified conditional effect sentence ; 3192

simple conditional effect sentence = (process identifier, "occurs if ", object identifier, 3193
" exists, in which case ", process identifier, " affects ", object identifier, 3194
", otherwise ", process identifier, " is skipped ") 3195

| ("If ", object identifier, " exists then ", process identifier, "occurs and affects ", 3196
object identifier, ", otherwise bypass ", process identifier) ; 3197

in out specified conditional effect sentence = (process identifier, " occurs if there is ", 3198
input state, object identifier, ", in which case ", process identifier, " changes ", 3199
in out object change phrase, ", else ", process identifier, 3200
" is skipped ") 3201

| (process identifier, " occurs if there is ", 3202
input state, object identifier, ", in which case ", process identifier, " changes ", 3203
in out object change phrase, 3204
", otherwise bypass ", process identifier) ; 3205

input specified conditional effect sentence = (process identifier, " occurs if there is ", 3206
input state, object identifier, " in which case ", process identifier, " changes ", 3207
object identifier, " from ", Input state, ", else ", process identifier, " is skipped ") 3208

| (process identifier, " occurs if there is ", input state, object identifier, 3209
" in which case ", process identifier, " changes ", object identifier, " from ", 3210
Input state, ", otherwise bypass ", process identifier) ; 3211

 3212
condition enabling sentence = conditional agent sentence 3213
 | conditional instrument sentence ; (* see 9.5.3.2 *) 3214
conditional agent sentence = (process identifier, " occurs if ", object with optional state, 3215

" exists, else ", process identifier, " is skipped") 3216
| (process identifier, " occurs if ", object with optional state, 3217

" exists, else bypass ", process identifier) ; 3218
conditional instrument sentence = (process identifier, " occurs if ", object with optional state, 3219

" exists, else ", process identifier, " is skipped") 3220
| (process identifier, " occurs if ", object with optional state, 3221

" exists, else bypass ", process identifier) ; 3222

A.4.5.4.4 Invocation sentence 3223

invocation sentence = (process identifier, " invokes ", process list) 3224
| (process identifier, " invokes itself ") 3225
| invocation select sentence ; (* see 9.5.2.5 and 12.3 *) 3226

 3227
invocation select sentence = invocation Or sentence 3228

| invocation Xor sentence ; 3229
 3230
invocation Or sentence = ("At least one of ", process Or list, " invokes ", process identifier) 3231

| (process identifier, " invokes at least one of", process Or list) ; 3232
invocation Xor sentence = ("Exactly one of ", process Or list, " invokes ", process identifier) 3233

| (process identifier, " invokes exactly ", process Xor list at end); 3234

A.4.5.4.5 Exception sentence 3235

exception sentence = overtime exception sentence 3236
 | undertime exception sentence ; (* see 9.5.4 *) 3237
overtime exception sentence = active process identifier, " occurs if duration of ", process identifier, " exceeds ", 3238
 max duration time units ; 3239
undertime exception sentence = active process identifier, " occurs if duration of ", process identifier, 3240

" falls short of ", min duration time units ; 3241
 3242
(* EndRegion: Control sentences *) 3243
(* EndRegion: Procedural sentences *) 3244
 3245

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 109

A.4.6 OPL Structural sentences 3246

A.4.6.1 Structural sentence 3247

(* Region: Structural sentences - This region defines all sentences that connect things in static, time-3248
independent, long-lasting relations *) 3249
 3250
 3251
structural sentence = tagged structural sentence 3252

| aggregation sentence 3253
| characterization sentence 3254
| exhibition sentence 3255
| specialization sentence 3256
| instantiation sentence ; (* see 10.1 *) 3257

A.4.6.2 OPL tagged structures 3258

A.4.6.2.1 Tagged structural sentence 3259

tagged structural sentence = unidirectional tagged structural sentence 3260
| bidirectional tagged structural sentence ; 3261

A.4.6.2.2 Unidirectional tagged structural sentence 3262

unidirectional tagged structural sentence = single link unidirectional tagged sentence 3263
| forked tagged structural sentence ; (* see 10.2.1 and 11.2 *) 3264

single link unidirectional tagged sentence = nullTag unidirectional object tagged structural sentence 3265
 | nullTag unidirectional process tagged structural sentence 3266

| non nullTag unidirectional object tagged structural sentence 3267
| non nullTag unidirectional process tagged structural sentence ; 3268
 (* see 10.2.2 and 11.2 *) 3269

 3270
nullTag unidirectional object tagged structural sentence = [participation constraint, " "], 3271

source object, uniDirNullTag, [participation constraint, " "], destination object ; 3272
nullTag unidirectional process tagged structural sentence = [participation constraint, " "], 3273

source process, uniDirNullTag, [participation constraint, " "], destination process ; 3274
non nullTag unidirectional object tagged structural sentence = [participation constraint, " "], source object, " ", 3275

forward tag, " ", [participation constraint, " "], destination object, 3276
[expression constraint] ; 3277

non nullTag unidirectional process tagged structural sentence = [participation constraint, " "], source process, 3278
" ", forward tag, " ", [participation constraint, " "], destination process ; 3279

 3280
forked tagged structural sentence = forked nullTag object tagged structural sentence 3281

| forked nullTag process tagged structural sentence 3282
| forked non nullTag object tagged structural sentence 3283
| forked non nullTag process tagged structural sentence ; 3284

forked nullTag object tagged structural sentence = [participation constraint, " "], source object, uniDirNullTag, 3285
object tine set ; 3286

forked nullTag process tagged structural sentence = [participation constraint, " "], source process, 3287
uniDirNullTag, process tine set ; 3288

forked non nullTag object tagged structural sentence = [participation constraint, " "], source object, " ", 3289
forward tag, " ", object tine set ; 3290

forked non nullTag process tagged structural sentence = [participation constraint, " "], source process, " ", 3291
forward tag, " ", process tine set ; 3292

 3293
object tine set = tine object | ((tine object, [{", ", tine object }], " and ", (tine object | "more")), 3294

[(", ordered by ", order criteria) | (", in that sequence")]) ; 3295
process tine set = tine process | ((tine process, [{", ", tine process }], " and ", (tine process | "more")), 3296

[(", ordered by ", order criteria) | (", in that sequence")]) ; 3297
order criteria = name ; 3298

ISO/PDPAS 19450

110 © ISO 2014 – All rights reserved

tine object = [participation constraint, " "], object with optional state ; 3299
source object = object with optional state ; 3300
destination object = object with optional state ; 3301
tine process = [participation constraint, " "], process identifier ; 3302
source process = process identifier ; 3303
destination process = process identifier ; 3304
uniDirNullTag = " relates to " 3305

| " relate to " 3306
| user defined uniDirNullTag ; 3307

forward tag = tag expression ; 3308
user defined uniDirNullTag = tag expression ; 3309

A.4.6.2.3 Bidirectional tagged structural sentences 3310

bidirectional tagged structural sentence = asymmetric bidirectional object tagged structural sentence 3311
| asymmetric bidirectional process tagged structural sentence 3312
| symmetric bidirectional object tagged structural sentence 3313
| symmetric bidirectional process tagged structural sentence ; (* see 10.2.3 and 11.2 *) 3314

 3315
asymmetric bidirectional object tagged structural sentence = 3316

([participation constraint, " "], source object, bidir forward tag, 3317
[participation constraint, " "], destination object, [expression constraint]) 3318

| ([participation constraint, " "], destination object, bidir backward tag, 3319
[participation constraint, " "], source object, [expression constraint]) ; 3320

asymmetric bidirectional process tagged structural sentence = 3321
([participation constraint, " "], source process, bidir forward tag, 3322

[participation constraint, " "], destination process) 3323
| ([participation constraint, " "], destination process, bidir backward tag, 3324

[participation constraint, " "], source process) ; 3325
symmetric bidirectional object tagged structural sentence = 3326

([participation constraint, " "], source object, " and ", [participation constraint, " "], 3327
destination object, " are ", biDirNullTag) 3328

 | ([participation constraint, " "], source object, " and ", 3329
[participation constraint, " "], 3330
 destination object), " are ", symmetric tag ; 3331

symmetric bidirectional process tagged structural sentence = 3332
([participation constraint, " "], source process, 3333
" and ", [participation constraint, " "], destination process, " are ", biDirNullTag) 3334

 | ([participation constraint, " "], source process, 3335
" and ", [participation constraint, " "], destination process), " are ", symmetric tag ; 3336

 3337
symmetric tag = tag expression ; 3338
bidir forward tag = tag expression ; 3339
bidir backward tag = tag expression ; 3340
biDirNullTag = " related" 3341

| user defined biDirNullTag ; 3342
user defined biDirNullTag = tag expression ; 3343

A.4.6.3 OPL fundamental structures 3344

A.4.6.3.1 Aggregation sentences 3345

aggregation sentence = object forked aggregation sentence 3346
| process forked aggregation sentence ; (* see 10.3.2 *) 3347

object forked aggregation sentence = whole object, " consists of ", object parts list ; 3348
process forked aggregation sentence = whole process, " consists of ", process parts list ; 3349
object parts list = part object 3350

| (part object, [{ ", ", part object } , " and ", (part object | " at least one other part")]) ; 3351
process parts list = part process 3352

| (part process, [{ ", ", part process }, " and ", 3353

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 111

(part process | " at least one other part")]) ; 3354
whole object = object identifier ; 3355
part object = [participation constraint, " "], object identifier ; 3356
whole process = process identifier ; 3357
part process = [participation constraint, " "], process identifier ; 3358

A.4.6.3.2 Characterization sentences 3359

characterization sentence = object forked characterization sentence 3360
| process forked characterization sentence ; (* see 10.3.3 *) 3361

 3362
object forked characterization sentence = basic object forked characterization sentence 3363

| partial object forked characterization sentence 3364
| AsWellAs object forked characterization sentence 3365
| partial AsWellAs object forked characterization sentence ; 3366

basic object forked characterization sentence = object identifier, " exhibits ", (attribute list | operator list) ; 3367
partial object forked characterization sentence = object identifier, " exhibits ", ((attribute list, 3368

", and at least one other attribute ") | (operator list, 3369
", and at least one other operator")) ; 3370

AsWellAs object forked characterization sentence = object identifier, " exhibits ", attribute list, ", as well as ", 3371
operator list ; 3372

partial AsWellAs object forked characterization sentence = object identifier, " exhibits ", attribute list, 3373
", and at least one other attribute", ", as well as ", operator list, 3374
", and at least one other operator" ; 3375

 3376
attribute = object identifier ; 3377
operator = process identifier ; 3378
attribute list = object list ; 3379
operator list = process list ; 3380
 3381
process forked characterization sentence = basic process forked characterization sentence 3382

| partial process forked characterization sentence 3383
| partial AsWellAs process forked characterization sentence 3384
| AsWellAs process forked characterization sentence ; 3385

basic process forked characterization sentence = process identifier, " exhibits ", (operator list | attribute list) ; 3386
partial process forked characterization sentence = process identifier, " exhibits ", ((operator list, 3387

", and at least one other operator ") | (attribute list, 3388
", and at least one other attribute")) ; 3389

 3390
AsWellAs process forked characterization sentence = process identifier, " exhibits ", operator list, ", 3391

as well as ", attribute list ; 3392
partial AsWellAs process forked characterization sentence = process identifier, " exhibits ", operator list, 3393

", and at least one other operator", ", as well as ", attribute list, 3394
", and at least one other attribute ; 3395

A.4.6.4 Exhibition sentences 3396

exhibition sentence = object exhibition sentence 3397
 | process exhibition sentence ; (* see 10.3.3.2.2 and 11.3 *) 3398
object exhibition sentence = feature, " of ", object identifier, (range clause | " is ", 3399

((attribute list | operator list) | (attribute list, " as well as ", operator list))) ; 3400
process exhibition sentence = feature, " of " , process identifier, " is ", ((operator list | object list) 3401

| (operator list, " as well as ", attribute list)) ; 3402
 3403
feature = attribute | operator ; 3404

A.4.6.5 Specialization sentences 3405

specialization sentence = object specialization sentence 3406
| process specialization sentence 3407

ISO/PDPAS 19450

112 © ISO 2014 – All rights reserved

| state specialization sentence ; (* see 10.3.4 *) 3408
 3409
object specialization sentence = basic object specialization sentence 3410

| multiple object specialization sentence 3411
| partial object specialization sentence 3412
| Xor object specialization sentence 3413
| multiple object inheritance specialization sentence ; 3414

 3415
basic object specialization sentence = special object, " is a ", general object ; 3416
multiple object specialization sentence = special object list, " are ", general object ; 3417
partial object specialization sentence = special object list, " and other specializations are ", general object ; 3418
Xor object specialization sentence = basic Xor object specialization sentence 3419

| comma separated Xor object specialization sentence ; 3420
basic Xor object specialization sentence = special object, " can be either ", general object, " or ", 3421

general object ; 3422
comma separated Xor object specialization sentence = special object, " can be one of ", general object, 3423

{ ", ", general object }, " or ", general object ; 3424
multiple object inheritance specialization sentence = special object, " is ", general object list ; 3425
 3426
general object = object identifier ; 3427
special object = object identifier ; 3428
general object list = " a ", object identifier, [{ " a ", object identifier }], " and a ", object identifier ; 3429
special object list = object list ; 3430
 3431
process specialization sentence =basic process specialization sentence 3432

| multiple process specialization sentence 3433
| partial process specialization sentence 3434
| Xor process specialization sentence 3435
| multiple process inheritance specialization sentence ; 3436

basic process specialization sentence = special process, " is ", general process ; 3437
multiple process specialization sentence = special process list, " are ", general process ; 3438
partial process specialization sentence = special process list, " and other specializations are ", 3439

general process ; 3440
Xor process specialization sentence = basic Xor process specialization sentence 3441

| comma separated Xor process specialization sentence ; 3442
basic Xor process specialization sentence = special process, " can be either ", general process, " or ", 3443

general process ; 3444
comma separated Xor process specialization sentence = special process, " can be one of ", general process, 3445

{ ", ", general process }, " or ", general process ; 3446
multiple process inheritance specialization sentence = special process, " is ", general process list ; 3447
 3448
general process = process identifier ; 3449
special process = process identifier ; 3450
general process list = " a", process identifier, [{ " a ", process identifier }] " and a ", process identifier ; 3451
special process list = process list ; 3452
 3453
state specialization sentence = basic state specialization sentence 3454

| multiple state specialization sentence 3455
| partial state specialization sentence ; 3456

basic state specialization sentence = state specified object, " is a ", state specified object ; 3457
multiple state specialization sentence = state specified object list, " are ", state specified object ; 3458
partial state specialization sentence = state specified object list, " and other specializations are 3459

", state specified object ; 3460
 3461
state specified object = state identifier, " ", object identifier ; 3462
state specified object list = state specified object 3463

| state specified object, [{ ", ", state specified object }], " and ", state specified object ; 3464

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 113

A.4.6.6 Instantiation sentences 3465

instantiation sentence = object instantiation sentence 3466
| process instantiation sentence ; (* see 10.3.5 *) 3467

 3468
object instantiation sentence = basic object instantiation sentence 3469

| multiple object instantiation sentence ; 3470
basic object instantiation sentence= instance object, " is an instance of ", object class ; 3471
multiple object instantiation sentence = instance object list, " are instances of ", object class ; 3472
 3473
process instantiation sentence = basic process instantiation sentence 3474

| multiple process instantiation sentence ; 3475
basic process instantiation sentence = instance process, " is an instance of ", process class ; 3476
multiple process instantiation sentence = instance process list, " are an instance of ", process class ; 3477
 3478
instance object = object identifier ; 3479
instance process = process identifier ; 3480
object class = object identifier ; 3481
process class = process identifier ; 3482
instance object list = object list ; 3483
instance process list = process list ; 3484
 3485
(* EndRegion: Structural sentences *) 3486
 3487

A.4.7 OPL Context management 3488

A.4.7.1 Context management sentence 3489

(* Region: Context management sentences - This region defines all sentences that manage OPD context 3490
shifts *) 3491
 3492
context management sentence = unfolding sentence 3493

| folding sentence 3494
| in Zooming sentence 3495
| out Zooming sentence ; (* see 14.2.1 *) 3496

 3497
(* in diagram object and process unfolding are equivalent to corresponding structural sentences *) 3498

A.4.7.2 Unfolding sentences 3499

unfolding sentence = object unfolding sentence 3500
| process unfolding sentence ; 3501

object unfolding sentence = underspecified object unfolding sentence 3502
| whole object unfolding sentence 3503
| general object unfolding sentence 3504
| class object unfolding sentence 3505
| exhibitor object unfolding sentence ; 3506
 3507

underspecified object unfolding sentence = object identifier, " unfolds into ", attribute list, 3508
[" as well as ", operator list] ; 3509

whole object unfolding sentence = whole object, " from ", parent OPD, " part-unfolds in ", child OPD, 3510
" into ", object parts list ; 3511

general object unfolding sentence = general object, " from ", parent OPD, " specialization-unfolds in ", 3512
child OPD, " into ", special object list ; 3513

class object unfolding sentence = object class, " from ", parent OPD, " instance-unfolds in ", child OPD, 3514
" into ", instance object list ; 3515

exhibitor object unfolding sentence = object identifier, " from ", parent OPD, " feature-unfolds in ", child OPD, 3516
" into ", attribute list, [" as well as ", operator list] ; 3517
 3518

ISO/PDPAS 19450

114 © ISO 2014 – All rights reserved

process unfolding sentence = underspecified process unfolding sentence 3519
| whole process unfolding sentence 3520
| general process unfolding sentence 3521
| class process unfolding sentence 3522
| exhibitor process unfolding sentence ; 3523

underspecified process unfolding sentence = process identifier, " unfolds into ", operator list, 3524
[", as well as ", attribute list] ; 3525

whole process unfolding sentence = whole process, " from ", parent OPD, " part-unfolds in ", child OPD, 3526
" into ", process parts list ; 3527

general process unfolding sentence = general process, " from ", parent OPD, " specialization-unfolds in ", 3528
child OPD, " into ", special process list ; 3529

class process unfolding sentence = process class, " from ", parent OPD, " instance-unfolds in ", child OPD, 3530
" into ", instance process list ; 3531

exhibitor process unfolding sentence = process identifier, " from ", parent OPD, " feature-unfolds in ", 3532
child OPD, " into ", operator list, [" as well as ", attribute list] ; 3533

 3534

A.4.7.3 Folding sentences 3535

folding sentence = object folding sentence 3536
 | process folding sentence ; 3537
 3538
(* a folding sentence is only relevant for an OPD object or process for which unfolding produces a child OPD 3539
and is the OPL equivalent to the graphical bold contour designation *) 3540
 3541
object folding sentence = object identifier, " is folding of ", child OPD ; 3542
process folding sentence = process identifier, " is folding of ", child OPD; 3543
 3544

A.4.7.4 In zoom sentence 3545

in zooming sentence = process in zoom sentence 3546
| object in zoom sentence ; 3547

process in zoom sentence = in diagram process in zoom sentence 3548
| new diagram process in zoom sentence ; 3549

 3550
in diagram process in zoom sentence = (process identifier, " zooms into ", process list, "in that sequence", 3551

[", as well as ", object in zoom list]) 3552
 | (process identifier, " zooms into parallel ", process list, [", as well as ", 3553

object in zoom list]) 3554
| (process identifier, " zooms into ", process list, " and parallel ", process list, 3555

", in that sequence", [", as well as ", object in zoom list]) ; 3556
new diagram process in zoom sentence = (process identifier, " from ", parent OPD, " zooms in ", child OPD, 3557

" into ", process list, "in that sequence", [", as well as ", object in zoom list]) 3558
 | (process identifier, " from ", parent OPD, " zooms in ", child OPD, " into parallel ", 3559

process list, [", as well as ", object in zoom list]) 3560
| (process identifier, " from ", parent OPD, " zooms in ", child OPD, " into ", 3561

process list, " and parallel ", process list, ", in that sequence", 3562
[", as well as ", object in zoom list]) ; 3563

 3564
object in zoom sentence = in diagram object in zoom sentence 3565

| new diagram object in zoom sentence ; 3566
 3567
in diagram object in zoom sentence = (object identifier, " zooms into ", object list, "in that sequence", 3568

[", as well as ", process in zoom list]) ; 3569
new diagram object in zoom sentence = (object identifier, " from ", parent OPD, " zooms in ", child OPD, 3570

" into ", object list, "in that sequence", [", as well as ", process in zoom list]) ; 3571
 3572

object in zoom list = object identifier, [{ ", ", object identifier }, " and ", object identifier, ", in that sequence"] ; 3573
process in zoom list = process identifier, [{", ", process identifier }, " and ", process identifier, 3574

", in that sequence"] ; 3575

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 115

A.4.7.5 Out zooming sentence 3576

out zooming sentence = process out zoom sentence 3577
 | object out zoom sentence ; 3578
 3579
(* an out zoom sentence is only relevant for an OPD process or object for which in zooming produces a child 3580
OPD and is the OPL equivalent to the graphical bold contour designation *) 3581
 3582
process out Zoom sentence = process identifier, " is out zoom from ", child OPD ; 3583
object out Zoom sentence = object identifier, " is out zoom from ", child OPD ; 3584
 3585
 3586
(* EndRegion: Context management sentences *) 3587
(* EndRegion: OPL document *) 3588
(* EndRegion: OPL EBNF *) 3589
 3590

ISO/PDPAS 19450

116 © ISO 2014 – All rights reserved

Annex B 3591

(informative) 3592

 3593

Guidance for Object-Process 3594

Methodology 3595

B.1 Introduction 3596

In view of the rapid development of complex and complicated systems, the need for an intuitive yet formal way 3597
of documenting standards for and designs of new systems, or knowledge about existing systems becomes 3598
ever more apparent. This need, in turn, requires a solid infrastructure for recording, storing, arranging, and 3599
presenting the accumulated knowledge and the creative ideas that build on this knowledge. 3600

Conceptual modelling refers to the practice of representing system-related knowledge. The outcome of this 3601
activity is a conceptual model. Conceptual modelling, which usually precedes mathematical and physical 3602
modelling, is the primary activity required not only for engineering systems to be understood, designed, and 3603
managed, but also for authoring standards that are as complete and as coherent as possible. Modelling is 3604
essential and gives rise to model-based systems engineering (MBSE). 3605

Understanding physical, biological, artificial, and social systems and devising standards related to them 3606
requires a well-founded, formal, yet intuitive methodology and language that is capable of modelling these 3607
complexities in a coherent, straightforward manner. The same modelling paradigm, the heart of the 3608
methodology, should serve for both designing new systems and for studying and improving existing systems. 3609
The paradigm should apply to artificial as well as natural systems, and faithfully represent physical and 3610
informatical things of the modelled domain. Object-Process Methodology (OPM) provides the means to 3611
address these aspirations. 3612

NOTE: The remainder of Annex B assumes the reader is familiar with the content of the normative clauses of this 3613
International Standard. 3614

B.2 Thing importance OPM principle 3615

Major system-level processes can be as important as, or even more important than objects in the system 3616
model. In particular, OPM specifies that the top-level process of an OPM model of a system is the system's 3617
function, the value-providing process that embodies the system's purpose and use. Hence, a process must be 3618
amenable for modelling independent of any particular set of objects involved in its occurrence. 3619

The relative importance of a thing T in an OPM system model is generally proportional to the highest OPD in 3620
the OPD hierarchy where T appears. 3621

B.3 What a new OPD should contain 3622

A good OPD set is readable and easy to follow and comprehend. The following rules of thumb are helpful in 3623
deciding when to create a new OPD and ways to keep OPDs as easy to read and grasp as possible: 3624

 the OPD should not stretch over more than one page or one average-size monitor screen; 3625

 the OPD should not contain more than 20–25 things; 3626

 things must not occlude each other, i.e. they are either completely contained within higher-level things, 3627
e.g. in case of zooming, or have no overlapping area; 3628

 the diagram should not contain too many links – roughly the same as the number of things; 3629

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 117

 a link should not cross the area occupied by a thing; and,. 3630

 the number of links crossing each other should be minimized. 3631

B.4 The element representation OPM principle 3632

An OPM model element appearing in one OPD may appear in any other OPD as the same element. This 3633
principle allows the possibility of representing any model element (thing or link) any number of times in as 3634
many OPDs as the modeller finds useful. Since a link cannot exists without the things it links, for a link to 3635
appear in an OPD, the two things that it links must be present as well 3636

Although a modeller may include any number of things in any OPD, for reasons of clarity and clutter 3637
avoidance, it is often highly desirable to include in an OPD only those elements that are needed to grasp a 3638
certain aspect or view of the system. 3639

B.5 The multiple thing copies convention 3640

To avoid long and winding links that cross from one side of the OPD to another and clutter it, an OPD may 3641
contain multiple copies of the same thing. This multiple thing copies convention complements the element 3642
representation OPM principle. Just as an OPM model element appearing in one OPD may appear in any OPD, 3643
an OPM element may appear more than once in any OPD. Accordingly, for the sake of avoiding OPD clutter 3644
by long, crisscrossing links, a thing may appear at another place in the same OPD using a shorter link. To 3645
facilitate recognition of the repetition, the modeller may replace thing symbol by a corresponding duplicate 3646
thing symbol – a small object or process slightly showing behind the repeated thing as illustrated in Figure B.1. 3647
However, the modeller should use this alternative sparingly as it requires the model reader to notice and keep 3648
in mind the longer links that do not appear explicitly in the current OPD context. 3649

 3650

Figure B.1 — Duplicate object and duplicate process symbols 3651

B.6 Naming guidelines 3652

B.6.1 Importance of name selection 3653

Selecting appropriate labelling names for OPM model elements, i.e. the objects, processes, and links, is 3654
important because the labels affect the ease of communication to and comprehension of the model by the 3655
intended audience and the logical flow and sense-making of the corresponding OPL sentences. 3656

B.6.2 Object naming 3657

A name for an object should be singular. Convert plural names to a singular form. The recommended way to 3658
convert an object with several members is to add the word "Set" (usually for inanimate objects) or "Group" 3659
(usually for humans) after the singular form. 3660

EXAMPLE 1 "Ingredients" (say, of a cake) becomes "Ingredient Set", while "Customers" becomes "Customer Group". 3661

ISO/PDPAS 19450

118 © ISO 2014 – All rights reserved

Because object names must be unique within the system model, the modeller may use the name of a 3662
refineable as a prefix for its refine names or may use the name of the refineable as a suffix preceded by "of" 3663
after the refine name. Either of these naming schemes allows contextual distinctions when referring to refines 3664
with similar semantics. 3665

Object names may be phrases with more than one word, as in Apple Cake or Automobile Crash. 3666

EXAMPLE 2 If a modeller wants Size as an attribute of both Clock Set and Watch Set, then to distinguish between 3667
the two Size attributes the former may be Clock Set Size and the latter Watch Set Size or the former may be Size of 3668
Clock Set and the latter Size of Watch Set. 3669

NOTE 1 An implementation of OPM should notify the modeller when an attempt to include an object as a refinee in 3670
more than one context occurs so that the modeller may determine the appropriateness of the inclusion. 3671

NOTE 2 An implementation may establish a default syntax to resolve refinee names. 3672

B.6.3 Process naming 3673

A process name is a phrase whose last word should be the gerund form of a verb, i.e. a verb with the "ing" 3674
suffix. If there are several choices, such as in Construction vs. Constructing, the latter is preferable. 3675

The following variations for process naming exist: 3676

 the verb version, which is simply the gerund form of the verb, namely verb + ing, as in Making or 3677
Responding; 3678

 the noun-verb version, which is a concatenation of a noun (an OPM object) with the gerund, namely noun 3679
+ verb + ing, as in Cake Making or Crash Responding; 3680

 the adjective-verb version, which is a concatenation of an adjective with the gerund form of the verb, 3681
namely adjective + verb + ing, as in Quick Making or Automated Responding; and, 3682

 The adjective-noun-verb version, which is a concatenation of an adjective with a noun with the gerund, 3683
namely adjective + noun + verb + ing, as in Quick Cake Making or Automatic Crash Responding. 3684

In the latter cases, the adjective qualifies the process (the gerund, which is a noun). However, the adjective 3685
may also qualify the object (the noun), as in Sweet Cake Making or Fatal Crash Responding. 3686

The name of the function, as well as the names of all OPM processes, should consist of no more than four 3687
capitalized words ending with a gerund verb form, e.g. Large City Population Securing. 3688

Because process names must be unique, the modeller may use the name of a refineable as a suffix preceded 3689
by "of" after the refine name. The naming scheme allows contextualized distinctions when referring to refines 3690
with similar semantics. 3691

B.6.4 State naming 3692

The names of states should reflect the various relevant situations in which their "owning" object can occur at 3693
any given point in time. Preferred state names are passive forms of the owning object rather than the gerund 3694
form. 3695

EXAMPLE If a Product is painted and then inspected, its states should be painted and inspected, rather than 3696
painting and inspecting. Painting is the process that changes Product from its unpainted to its painted state, and 3697
Inspecting changes Product from its painted state to its inspected state. While Painting of the Product occurs, it has 3698
left its unpainted state for as long as Painting takes place and it is in transition between states and has not yet entered its 3699
painted state until Painting is complete. 3700

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 119

B.6.5 Capitalization convention 3701

In OPM the first letter of each word in the name of a thing (object or process) is capitalized, while the name of 3702
an object state or a link is not capitalized. This convention helps to produce OPL sentences that are more 3703
readable. 3704

ISO/PDPAS 19450

120 © ISO 2014 – All rights reserved

Annex C 3705

(informative) 3706

 3707

Modelling OPM using OPM 3708

C.1 OPM models of OPM 3709

The OPD in Figure C.1 — OPM model structure 3710

Figure C.1 — OPM model structure C.1 represents aspects of OPM as OPM models. Subclause C.4 3711
elaborates specific elements. Subclause C.5 presents a model relating to the treatment of links during 3712
unfolding and in-zooming. Subclause C.6 presents a model for evaluating process invocation, performance, 3713
and completion. 3714

This set of sub-clauses expresses OPM as a set of OPD together with the corresponding OPL. For this 3715
presentation, the modeller has chosen to limit the model contents to relatively simple OPM usage, i.e. 3716
compound links are minimal and there is no attempt to unify the individual OPD into a single OPM model. 3717
However, some advanced OPL expressions that limit the redundancy of text and aid in clarifying otherwise 3718
distinct but related model facts do occur. 3719

 3720

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 121

C.2 OPM model structure 3721

 3722

 3723

OPM Model specifies System. 3724
OPM Model consists of OPD Set and OPL Spec. 3725

OPL Spec consists of at least one OPL Paragraph. 3726
OPD Set consists of at least one OPD. 3727
OPD Set graphically specifies OPL Spec. 3728
OPL Spec textually specifies OPD Set. 3729

OPD consists of at least one OPD Construct. 3730
OPL Paragraph consists of at least one OPL Sentence. 3731
OPD graphically specifies OPL Paragraph. 3732
OPL Paragraph textually specifies OPD. 3733

OPD Construct graphically specifies OPL Sentence. 3734
OPL Sentence textually specifies OPD Construct. 3735
OPD Construct consists of Thing Set and Link Set. 3736

Thing Set consists of two to many Things. 3737
Link Set consists of at least one Link. 3738
Thing exhibits Name. 3739
OPL Sentence consists of three to many Phrases and at least one Punctuation Mark. 3740
Phrase consists of at least one Word. 3741
OPL Reserved Phrase and Name of Thing are Phrases. 3742
Link graphically specifies Reserved Phrase. 3743
Reserved Phrase textually specifies Link. 3744
Thing can be in-zoomed to create OPD 3745

Figure C.1 — OPM model structure 3746

ISO/PDPAS 19450

122 © ISO 2014 – All rights reserved

Figure C.1 — OPM model structureFigure C.1 — OPM model structure 3747

Figure C.1 — OPM model structure, is a model of the structure of an OPM model that depicts the conceptual 3748
aspects of OPM as parallel hierarchies of the graphic and textual OPM modalities and their correspondence to 3749
produce equivalent model expressions. An OPD Construct is the graphical expression of the corresponding 3750
textual OPL Sentence, which express the same model fact. An OPD and its corresponding OPL Paragraph 3751
are collections of model facts that a modeller places into the same model context. 3752

 3753

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 123

C.3 OPD Construct model 3754

 3755

OPD Construct consists of Thing Set and Link Set. 3756
Thing and Link are Elements. 3757
Thing Set consists of 2 to many Things. 3758
Link Set consists of at least one Link. 3759
Thing Set exhibits Size of Thing Set. 3760
Link Set exhibits Size of Link Set. 3761
Size of Thing Set can be 2 or >=3. 3762
Size of Link Set can be 1 or >=2. 3763
Basic Construct is an OPD Construct. 3764
Basic Construct exhibits 1 Size of Link Set. 3765
Basic Construct exhibits 2 Size of Thing Set. 3766

Figure C.2 — Model of OPD Construct and Basic Construct 3767

Figure C.2 — Model of OPD Construct and Basic Construct 3768

, elaborates the OPD Construct concept. The purpose of this model is to distinguish Basic Construct from 3769
another possible OPD Construct. A Basic Construct is a specialization of OPD Construct, which consists of 3770
exactly two Things connected by exactly one Link, The non-basic constructs include, among others, those 3771
with link fans or more than two refinees. 3772

EXAMPLE 1 In Figure C.1 — OPM model structure 3773

Figure C.1 — OPM model structure, the two objects OPM Model and OPD Set together with the aggregation-participation 3774
link from the former to the latter constitute a basic construct. The OPL sentence that is equivalent to this basic construct is: 3775
OPM Model consists of OPD Set. 3776

EXAMPLE 2 In Figure C.1 — OPM model structure 3777

Figure C.1 — OPM model structure, the three objects OPM Model, and OPD Set, and OPL Spec together with the 3778
aggregation-participation link from OPM Model to OPD Set and OPL Spec constitute a compound construct. The OPL 3779
sentence that is equivalent to this basic construct is: OPM Model consists of OPD Set and OPL Spec. 3780

NOTE An object-state link is implicit between an object and each one of its states. Graphically, this link expression 3781
occurs by placing the state inside the object rectangle, effectively linking the state with the object. Therefore, an object with 3782
two or more states is an OPD Construct, and an object with one state is a Basic Construct. A stateless object is not a 3783
construct at all, as it has not even an implicit link. 3784

In some situations, the syntax of two constructs combine easily into a compound OPL sentence that reduces 3785
redundancy in the text as shown in the next model variation for OPD Construct. 3786

ISO/PDPAS 19450

124 © ISO 2014 – All rights reserved

A modeller could add a process to the model of Figure C.2 — Model of OPD Construct and Basic 3787
Construct 3788

,Figure C.2 — Model of OPD Construct and Basic Construct 3789

 to indicate that the OPD Construct exhibits Connecting as shown in Figure C.3 — OPD Construct and Basic 3790
Construct construction 3791

. By adding states disconnected and connected of Thing Set, the purpose of the model thus includes the 3792
action of transforming a disconnected Thing Set to a connected Thing Set using the Link Set as an 3793
instrument of connection. 3794

 3795

OPD Construct consists of Link Set and Thing Set. 3796
OPD Construct exhibits Connecting. 3797
 Link Set consists of at least one Link. 3798
 Link Set exhibits Cardinality. 3799
 Cardinality of Link Set can be 1 or >=2. 3800
 Thing Set exhibits Cardinality. 3801
 Thing Set consists of 2 to many Things. 3802
 Cardinality of Thing Set can be 2 or >=3. 3803
 Link and Thing are Elements. 3804
 Connecting requires Link Set. 3805
 Connecting changes Thing Set from disconnected to connected. 3806
State disconnected of Thing Set is initial. 3807
State connected of Thing Set is final. 3808
Basic Construct is an OPD Construct. 3809
Basic Construct exhibits 1 Cardinality of Link Set and 2 Cardinality of Thing Set. 3810

Figure C.3 — OPD Construct and Basic Construct construction 3811

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 125

C.4 OPM Element models 3812

 3813

Thing and Link are Elements. 3814
Link connects 2 Things. 3815
Link consists of Source, Destination, and Connector. 3816
Connector consists of Line, Symbol, an optional Tag, and an optional Path Label. 3817
Tag and Path Label are Phrases. 3818
Source and Destination are Linked Things. 3819
Linked Thing is a Thing. 3820
Linked Thing exhibits Symbol and Multiplicity. 3821
Multiplicity exhibits Symbol and Lower&Upper Bound. 3822
Lower&Upper Bound can be 0..1, 0..*, 1..1, or 1..*. 3823
Lower&Upper Bound is by default 1..1. 3824
Symbol of Multiplicity can be ?, *, NONE, or +. 3825
? Symbol of Multiplicity denotes 0..1 Lower&Upper Bound. 3826
* Symbol of Multiplicity denotes 0..* Lower&Upper Bound. 3827
NONE Symbol of Multiplicity denotes 1..1 Lower&Upper Bound. 3828
+ Symbol of Multiplicity denotes 1..* Lower&Upper Bound. 3829

Figure C.4 — OPM model of OPM Element 3830

The model in Figure C.4 — OPM model of OPM Element 3831

, is only valid for basic constructs because Link connects 2 Things and not more than two. 3832

 3833

ISO/PDPAS 19450

126 © ISO 2014 – All rights reserved

 3834

 3835

Process and Object are Things. 3836
Object exhibits State Set. 3837
State Set exhibits Size. 3838
Cardinality of State Set can be s=0 or s>= 1. 3839
State Set consists of optional States. 3840
Current State is a State. 3841
Stateless Object and Stateful Object are Objects. 3842
Stateless Object exhibits s= 0 Size of State Set. 3843
Stateful Object exhibits s>= 1 Size of State Set. 3844
Stateful Object represents s State-Specific Objects. 3845
State-Specific Object Set consists of s State-Specific Objects. 3846
State-Specific Object refers to State. 3847

Figure C.5 — OPM model of Thing 3848

Figure C.5 — OPM model of Thing, is a model for an OPM Thing, showing its specialization into Object and 3849
Process. A set of States characterize Object, which can be empty, in a Stateless Object, or non-empty in the 3850
case of a Stateful Object. A Stateful Object with s States gives rise to a set of s stateless State-Specific 3851
Objects, one for each State. A particular State-Specific Object refers to an object in a specific state. Modelling 3852
the concept of State-Specific Object as both an Object and a State enables us to simplify the conceptual 3853
model by referring to an object and any one or its states by simply specifying Object. 3854

EXAMPLE In Error! Reference source not found., Product is a stateful object with 5 states, from which five 3855
istinct specializations of Product are derived, each referring to a distinct state of Product. Thus, the State-Specific 3856
Product called Tested Product refers to the state tested of Product. Of course, the same object, Tested Product, refers 3857
also to Product itself, because being a state; “tested” has no meaning without reference to the object of which it is a state. 3858
This way, there are five State-Specific Products, each being a specialization of Product and capturing a specific state of 3859
Product. 3860

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 127

 3861
Product can be designed, manufactured, tested, purchased, or used. 3862
Product derives State-Specific Product Set. 3863
State-Specific Product Set consists of 5 State-Specific Products. 3864
State-Specific Product is a Product. 3865
State-Specific Product refers to the current state of Product. 3866
Designed Product, Manufactured Product, Tested Product, Purchased Product, 3867

 and Used Product are State-Specific Products. 3868
Designed Product refers to Product's state designed. 3869
Manufactured Product refers to Product's state manufactured. 3870
Tested Product refers to Product's state tested. 3871
Purchased Product refers to Product's state purchased. 3872
Used Product refers to Product's state used. 3873

Figure C.6 — Example of state-specific object 3874

 3875

ISO/PDPAS 19450

128 © ISO 2014 – All rights reserved

 3876

Stateful Object exhibits State Set. 3877
State Set consists of at least one State, optional Initial States, optional Final States, and an optional3878

 Default State. 3879
State exhibits Designation and Symbol . 3880
Designation can be initial, final, or default. 3881
Initial State, Final State, and Default State are States. 3882
Initial State exhibits initial Designation and bold-contour rountangle Symbol of State. 3883
Final State exhibits final Designation and double-contour rountangle Symbol of State. 3884
Default State exhibits default Designation and rountangle pointed to by open arrow Symbol of 3885

 State. 3886

Figure C.7 — OPM model of stateful object and state 3887

 3888

 3889

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 129

 3890

Thing and Link are Elements. 3891
Link connects 2 Things. 3892
Link exhibits Linked Pair . 3893
Linked Pair consists of 2 Things. 3894
Linked Pair can be object-object, object-state, state-state, process-object, process-state, or 3895

 process-process. 3896
Structural Link and Procedural Link are Links. 3897
Object-Object Link and State-State Link are Structural Links. 3898
Object-State Link is an Object-Object Link. 3899
Object-Object Link exhibits object-object Linked Pair. 3900
Object-State Link exhibits object-state Linked Pair. 3901
State-State Link exhibits state-state Linked Pair. 3902
Process-Object Link and Process-Process Link are Procedural Links. 3903
Process-State Link is a Process-Object Link. 3904
Process-Object Link exhibits process-object Linked Pair. 3905
Process-State Link exhibits process-state Linked Pair. 3906
Process-Process Link exhibits process- process Linked Pair. 3907

Figure C.8 — OPM model of links 3908

The model in Figure C.8 — OPM model of links is only valid for basic constructs because Link connects 2 3909
Things and not more than two. 3910

ISO/PDPAS 19450

130 © ISO 2014 – All rights reserved

 3911

Thing exhibits Perseverance, Essence, and Affiliation. 3912
 Perseverance can be transient or persistent. 3913
 Essence can be physical or informatical. 3914
 Affiliation can be systemic or environmental. 3915
Object and Process are Things. 3916
Process exhibits transient Perseverance. 3917
Object exhibits persistent Perseverance. 3918
Physical Process, Informatical Process, Systemic Process, and Environmental Process are 3919

 Processes. 3920
Physical Object, Informatical Object, Systemic Object, and Environmental Object are Objects. 3921
Physical Process and Physical Object exhibit physical Essence. 3922
Informatical Process and Informatical Object exhibit informatical Essence. 3923
Systemic Process and Systemic Object exhibit systemic Affiliation. 3924
Environmental Process and Environmental Object exhibit environmental Affiliation. 3925

Figure C.9 — OPM model of Thing generic properties 3926

Figure C.9 — OPM model of Thing generic properties, depicts Thing and its Perseverance, Essence, and 3927
Affiliation generic properties modelled as attribute refinees of an exhibition-characterization link. 3928
Perseverance is the discriminating attribute between Object and Process. Essence is the discriminating 3929
attribute between Physical Object and Physical Process on the one hand, Informatical Object, and 3930
Informatical Process on the other hand. Affiliation is the discriminating attribute between Systemic Object 3931
and Systemic Process on the one hand, Environmental Object, and Environmental Process on the other 3932
hand. 3933

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 131

 3934

Thing exhibits Symbol. 3935
Symbol of Thing consists of Shape, Depth, and Contour. 3936
Shape can be ellipse or rectangle. 3937
Depth can be shaded or non- shaded. 3938
Contour can be solid or dashed. 3939
Process and Object are Things. 3940
Process exhibits ellipse Shape. 3941
Object exhibits rectangle Shape. 3942
Physical Process, Informatical Process, Systemic Process, and Environmental Process are 3943

 Processes. 3944
Physical Object, Informatical Object, Systemic Object, and Environmental Object are Objects. 3945
Physical Process and Physical Object exhibit shaded Depth. 3946
Informatical Process and Informatical Object exhibit flat Depth. 3947
Systemic Process and Systemic Object exhibit solid Contour. 3948
Environmental Process and Environmental Object exhibit dashed Contour. 3949

Figure C.10 — OPM model of Thing symbolic representation 3950

Figure C.10 — OPM model of Thing symbolic representation depicts an OPM model for the graphical 3951
representation of OPM things showing a Symbol refine attribute and three parts of a Symbol: Shape, Depth, 3952
and Contour. Shape is the part that enables the distinction between Object and Process. Depth is the part 3953
that enables the distinction between Physical Object and Physical Process on the one hand, Informatical 3954
Object and Informatical Process on the other hand. Contour is the part that enables the distinction between 3955
Systemic Object and Systemic Process on the one hand, Environmental Object and Environmental 3956
Process on the other hand. Since the states of an object bind to the object, the Essence and Affiliation 3957
associated with a particular state Object are the same as that of Object. 3958

Figure C.11 — OPM model of the eight Thing symbol representations is a variation of the model in 3959
Figure C.10 — OPM model of Thing symbolic representation, in which the three parts of the Symbol attribute 3960

ISO/PDPAS 19450

132 © ISO 2014 – All rights reserved

of Thing appear as eight values, one for each of the possible Thing configurations. Here, and in several other 3961
model figures of this Annex, the actual symbols appear at the bottom of the OPD. In this case, the symbol is 3962
below its respective model object and the value of Symbol of Thing. These eight symbols at the bottom of the 3963
OPD are illustrative and thus distinct from the OPD itself. Figure C.11 — OPM model of the eight Thing 3964
symbol representations, enhances the Symbol refinee of Figure C.10 — OPM model of Thing symbolic 3965
representation by enumerating the eight states of Symbol, which are the Cartesian product of the 2x2x2 3966
values of the Depth, Contour, and Shape refinee attributes of Symbol. 3967

 3968
Thing exhibits Symbol. 3969
Symbol of Thing consists of Depth, Contour, and Shape. 3970
Symbol of Thing can be shaded dashed rectangle, shaded solid ellipse, non-shaded dashed ellipse, 3971

 non-shaded solid ellipse, non-shaded solid rectangle, non-shaded dashed rectangle, 3972
 shaded solid rectangle, or shaded dashed rectangle. 3973

Object and Process are Things. 3974
Physical Process, Informatical Process, Systemic Process, and Environmental Process are Processes. 3975
Physical Object, Informatical Object, Systemic Object, and Environmental Object are Objects. 3976
Physical Systemic Process is a Physical Process and a Systemic Process. 3977
Physical Systemic Process exhibits shaded solid ellipse Symbol of Thing. 3978
Physical Environmental Process is a Physical Process and an Environmental Process. 3979
Physical Environmental Process exhibits shaded dashed ellipse Symbol of Thing. 3980
Informatical Environmental Process is an Informatical Process and an Environmental Process. 3981
Informatical Environmental Process exhibits non-shaded dashed ellipse Symbol of Thing. 3982
Informatical Systemic Process is an Informatical Process and a Systemic Process. 3983
Informatical Systemic Process exhibits non-shaded solid ellipse Symbol of Thing. 3984
Physical Environmental Object is a Physical Object and an Environmental Object. 3985
Physical Environmental Object exhibits shaded dashed rectangle Symbol of Thing. 3986
Physical Systemic Object is a Physical Object and a Systemic Object. 3987
Physical Systemic Object exhibits shaded solid rectangle Symbol of Thing. 3988
Informatical Environmental Object is an Informatical Object and an Environmental Object. 3989
Informatical Environmental Object exhibits non-shaded dashed rectangle Symbol of Thing. 3990
Informatical Systemic Object is an Informatical Object and a Systemic Object. 3991
Informatical Systemic Object exhibits non-shaded solid rectangle Symbol of Thing. 3992
Symbol of Thing consists of Depth, Contour and Shape. 3993

Figure C.11 — OPM model of the eight Thing symbol representations 3994

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 133

 3995
Basic Construct consists of Link and 2 Things. 3996
Link connects 2 Things. 3997
Structural Link and Procedural Link are Links. 3998
Basic Structural Construct and Basic Procedural Construct are Basic Constructs. 3999
Basic Structural Construct consists of Structural Link and 2 Objects. 4000
Basic Procedural Construct consists of Procedural Link, Object, and Process. 4001
Structural Link connects 2 Objects. 4002
Procedural Link connects a Process and an Object. 4003

Figure C.12 — Basic Construct elaboration 4004

The model in Figure C.12 — Basic Construct elaboration is only valid for basic constructs because Link 4005
connects 2 Things and not more than two. 4006

 4007

ISO/PDPAS 19450

134 © ISO 2014 – All rights reserved

 4008
Basic Structural Construct consists of Refineable, Refinee, and Structural Link. 4009
Refineable and Refinee are Things. 4010
Whole, Exhibitor, General, and Class are Refineables. 4011
Part, Feature, Specialization, and Instance are Refinees. 4012
Structural Link exhibits Semantics. 4013
Semantics can be aggregation-participation, exhibition-characterization, generalization-specialization, 4014

 classification-instantiation, or user-defined. 4015
Aggregation-Participation Link, Exhibition-Characterization Link, Generalization-Specialization Link, 4016

 Classification-Instantiation Link, and Tagged Structural Link are Structural Links. 4017
Aggregation-Participation Link exhibits aggregation-participation Semantics. 4018
Exhibition-Characterization Link exhibits exhibition-characterization Semantics. 4019
Generalization-Specialization Link exhibits generalization-specialization Semantics. 4020
Classification-Instantiation exhibits classification-instantiation Semantics. 4021
Tagged Structural Link exhibits user-defined Semantics. 4022
Aggregation- Participation Construct, Exhibition-Characterization Construct, 4023

 Generalization-Specialization Construct, Classification-Instantiation Construct 4024
 and Tagged Structural Construct are Basic Structural Constructs. 4025

Aggregation-Participation Construct consists of Aggregation-Participation Link, Whole, and Part. 4026
Exhibition- Characterization Construct consists of Exhibition- Characterization Link, Exhibitor, and Feature. 4027
Generalization- Specialization Construct consists of Generalization- Specialization Link, General, 4028

 and Specialization. 4029
Classification-Instantiation Construct consists of Classification-Instantiation Link, Class, and Instance. 4030
Tagged Structural Construct consists of Tagged Structural Link and 2 Things. 4031

Figure C.13 — OPM model of Basic Structural Construct 4032

 4033

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 135

 4034
Basic Procedural Construct consists of Object, Process, and Procedural Link. 4035
Procedural Link exhibits Semantics. 4036
Semantics of Procedural Link can be transformation, enablement, transformation & control, 4037

 and enablement & control. 4038
Transformee and Enabler are Objects. 4039
Controlling Transformee is a Transformee. 4040
Controlling Enabler is an Enabler. 4041
Transforming Link and Enabling Link are Procedural Links. 4042
Transforming & Control Link is a Transforming Link. 4043
Enabling & Control Link is an Enabling Link. 4044
Transforming Link exhibits transformation Semantics of Procedural Link. 4045
Enabling Link exhibits enablement Semantics of Procedural Link. 4046
Transforming & Control Link exhibits transformation & control Semantics of Procedural Link. 4047
Enabling & Control Link exhibits enablement & control Semantics of Procedural Link. 4048
Transformation Construct and Enablement Construct are Basic Procedural Constructs. 4049
Transformation Construct consists of Transforming Link, Transformee, and Process. 4050
Enablement Construct consists of Enablement Link, Enabler, and Process. 4051
Transformation & Control Construct is a Transformation Construct. 4052
Enablement & Control Construct is an Enablement Construct. 4053
Transformation & Control Construct consists of Transforming & Control Link, Controlling Transformee, 4054

 and Process. 4055
Enablement & Control Construct consists of Enablement & Control Link, Controlling Enabler, and Process. 4056

Figure C.14 — OPM model of Basic Procedural Construct 4057

 4058

ISO/PDPAS 19450

136 © ISO 2014 – All rights reserved

 4059
Transformation Construct consists of Transformee, Process, and Transforming Link. 4060
Transforming Link exhibits Symbol and Semantics. 4061
Symbol of Transforming Link can be unidirectional closed arrowhead or bidirectional closed arrowhead pair. 4062
Semantics of Transforming Link can be consumption, effect, or result. 4063
Consumption Link, Effect Link, and Result Link are Transforming Links. 4064
Effect Link exhibits effect Semantics of Transforming. 4065
Result Link exhibits result Semantics of Transforming. 4066
Consumee, Affectee, and Resultee are Transformees. 4067
Consumption Construct, Result Construct, and Effect Construct are Transformation Constructs. 4068
Consumption Construct consists of Consumption Link, Process, and Consumee. 4069
Effect Construct consists of Effect Link, Process, and Affectee. 4070
Result Construct consists of Result Link, Process, and Resultee. 4071
Consumption Link exhibits unidirectional closed arrowhead Symbol of Transforming Link 4072

 and consumption Semantics of Transforming Link. 4073
Effect Link exhibits bidirectional closed arrowhead consumption pair of Transforming Link 4074

 and effect Semantics of Transforming Link. 4075
Result Link exhibits unidirectional closed arrowhead Symbol of Transforming Link 4076

 and result Semantics of Transforming Link. 4077
State-Specified Consumption Construct is a Consumption Construct. 4078
State-Specified Result Construct is a Result Construct. 4079

Figure C.15 — OPM model of Transformation Construct 4080

Figure C.16 — OPM model of Transformation Construct link directionality complements Figure C.15 — OPM 4081
model of Transformation Construct by adding information about the directionality of the arrowhead symbols 4082
that connect an object with the process. Adding this information to Figure C.15 — OPM model of 4083
Transformation Construct could clutter the model figure and make it more difficult to comprehend. 4084

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 137

 4085
Transformation Construct consists of Transformee, Process, and Transforming Link. 4086
Consumption Link, Effect Link, and Result Link are Transforming Links. 4087
Consumption Construct, Result Construct, and Effect Construct are Transformation Constructs. 4088
Consumption Construct consists of Consumption Link, Process, and Consumee. 4089
Effect Construct consists of Effect Link, Process, and Affectee. 4090
Result Construct consists of Result Link, Process, and Resultee. 4091
Consumption Link connects from Consumee. 4092
Consumption Link connects to Process. 4093
Effect Link connects Affectee and Process. 4094
Result Link connects to Resultee. 4095
Result Link connects from Process. 4096

Figure C.16 — OPM model of Transformation Construct link directionality 4097

 4098

ISO/PDPAS 19450

138 © ISO 2014 – All rights reserved

 4099
Enablement Construct consists of Enabler, Process, and Enabling Link. 4100
Enabling Link exhibits Semantics and Symbol. 4101
Enabling Link connects from Enabler. 4102
Enabling Link connects to Process. 4103
Semantics of Enabling Link can be Agent or Instrument. 4104
Symbol of Enabling Link can be black lollipop or white lollipop. 4105
Agent and Instrument are Enablers. 4106
Agent Link and Instrument Link are Enabling Links. 4107
Agent Link exhibits agent Semantics of Enabling Link and black lollipop Symbol of Enabling Link. 4108
Instrument Link exhibits instrument Semantics of Enabling Link 4109

 and white lollipop Symbol of Enabling Link. 4110
Agent Construct and Instrument Construct are Enablement Constructs. 4111
Agent Construct consists of Agent, Process, and Agent Link. 4112
Instrument Construct consists of Instrument, Process, and Instrument Link. 4113
State-Specified Agent Construct is an Agent Construct. 4114
State-Specified Instrument Construct is an Instrument Construct. 4115

Figure C.17 — OPM model of Basic Enablement Construct 4116

 4117

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 139

 4118
State-Specified Agent Construct consists of State-Specified Agent, Process, and Agent Link. 4119
State-Specified Agent is a State-Specified Enabler. 4120
State-Specified Enabler is a State-Specified Object. 4121
Agent Link connects State-Specified Agent and Process. 4122

Figure C.18 — OPM model of state-specified agent construct with mapped example 4123

Figure C.18 — OPM model of state-specified agent construct with mapped example depicts two OPM models 4124
with the top of the figure expressing essential associations for a State-Specified Agent Construct and the 4125
bottom of the figure expressing a corresponding model construct. The former provides a metamodel for the 4126
latter. The broad arrows map the conceptual parts of the construct to the OPD symbols of the example. Below 4127
the OPD in the example is the corresponding OPL. 4128
 4129
For instructional purposes, similar mapping figures may express the correspondence between models of OPM 4130
construct conceptual models and corresponding OPM models in application. 4131
 4132
 4133

ISO/PDPAS 19450

140 © ISO 2014 – All rights reserved

C.5 In-zooming and out-zooming models 4134

C.5.1 The in-zooming and out-zooming mechanisms 4135

Both new-diagram in-zooming and new-diagram out-zooming create a new OPD context from an existing 4136
OPD context. New-diagram in-zooming starts with an OPD of relatively less details and adds elaboration or 4137
refinement as a descendant OPD that applies to a specific thing in the less detailed OPD. New-diagram out-4138
zooming starts with an OPD of relatively more details and removes elaboration or refinement to produce a 4139
less detailed, more abstract thing in an ancestor context. 4140

New-diagram in-zooming elaborates a refineable present in an existing OPD, say SDn, by creating a new 4141
OPD, SDn+1, which elaborates the refineable by adding subprocesses associated objects, and relevant links. 4142
The new-diagram in-zooming and in new-diagram out-zooming processes are inverse operations. 4143

Figure C.19 — New-Diagram In-Zooming and New-Diagram Out-Zooming models depicts the New-Diagram 4144
In-Zooming and New-Diagram Out-Zooming processes. The model on the right uses in-diagram in-4145
zooming of the model on the left to elaborate the two processes, one for creating a new-diagram in-zoomed 4146
context and one for creating a new-diagram out-zoomed context. New-Diagram In-Zooming begins with 4147
Content Showing, followed by Link Refining. New-Diagram Out-Zooming begins with Link Abstracting, 4148
the inverse process of Link Refining, followed by Content Hiding, the inverse process of Content Showing. 4149

 4150
New-Diagram In-Zooming requires SDn. New-Diagram In-Zooming zooms into Content Showing 4151
New-Diagram In-Zooming yields SDn+1. and Link Refining in that sequence, as well as Semi-Zoomed OPD. 4152
New-Diagram In-Zooming yields SDn+1. Content Showing requires SDn. 4153
New-Diagram Out-Zooming requires SDn+1. Content Showing yields Semi-Zoomed OPD. 4154

Link Refining consumes Semi-Zoomed OPD. 4155
 Link Refining yields SDn+1. 4156

New-Diagram Out-Zooming zooms into Link Abstracting 4157
 and Content Hiding in that sequence, 4158

as well as Semi-Zoomed OPD. 4159
Link Abstracting requires SDn+1. 4160
Link Abstracting yields Semi-Zoomed OPD. 4161
Content Hiding consumes Semi-Zoomed OPD. 4162
Content Hiding yields SDn. 4163

Figure C.19 — New-Diagram In-Zooming and New-Diagram Out-Zooming models 4164

Semi-Zoomed OPD is an interim object created and subsequently consumed during New Diagram In-4165
Zooming or New-Diagram Out-Zooming. Semi-Zoomed OPD appears only within the contexts of New-4166
Diagram In-Zooming and New-Diagram Out-Zooming. 4167

Figure C.20 — New-Diagram In-Zooming and New-Diagram Out-Zooming elaboration shows New-Diagram 4168
In-Zooming and New-Diagram Out-Zooming with unfolding of SDn, SDn+1, and Semi-zoomed OPD from 4169

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 141

Figure C.19 — New-Diagram In-Zooming and New-Diagram Out-Zooming models. New-Diagram In-4170
Zooming and New-Diagram Out-Zooming operate on a particular instance of SDn shown at the middle top 4171
of Figure C.20 — New-Diagram In-Zooming and New-Diagram Out-Zooming elaboration, where the SDn 4172
detail is one of many possibilities. In this case, SDn includes P, which is the refineable process, as well as 4173
four objects connected to P with different kinds of links: the consumee C, the agent A, the instrument D, and 4174
the resultee B. 4175

The in-diagram in-zooming of Semi-Zoomed OPD makes clear that it is an interim representation created and 4176
consumed during New Diagram In-Zooming as well as during New Diagram Out-Zooming. The Semi-4177
Zoomed OPD is the same in both situations. 4178

Content Showing is the first of the two New-Diagram In-Zooming subprocesses. During Content Showing, 4179
the boundary of P expands to make room for showing its content—the model subprocesses P1, P2, and P3, 4180
as well as the interim model object BP. The result of Content Showing is the unfolding of object Semi-4181
Zoomed OPD. As an interim object, recognizable only in the context of New-Diagram In-Zooming, the 4182
second subprocess, Link Refining, consumes it while creating SDn+1. During Link Refining, the procedural 4183
links attached to the contour of P migrate to the appropriate subprocesses as determined by the modeller. 4184
Thus, since P1 consumes C, the consumption link arrowhead migrates from P to P1. The agent A handles 4185
both P1 and P2, so in SDn+1 two agent links, one to P1 and the other to P2, replace the single one in SDn 4186
from A to P. P3 requires D, so the instrument link moves from P to P3. Finally, since BP results from P1 and 4187
P3 consumes it, the corresponding result and consumption links are added, making BP an internal object of P, 4188
an object that is only recognizable within the context of P, like P1, P2, and P3. Notice that BP is to P as Semi-4189
Zoomed OPD is to New-Diagram In-Zooming. 4190

 4191

Figure C.20 — New-Diagram In-Zooming and New-Diagram Out-Zooming elaboration 4192

 4193

C.5.2 Simplifying an OPD 4194

In-diagram out-zooming can combine with new-diagram in-zooming to simplify an already-modelled OPD that 4195
the modeller deems overly complicated. In-diagram out-zooming followed by new-diagram in-zooming is an 4196
option when the modeller realizes that the current OPD is overloaded with details. In-diagram out-zooming 4197
reduces the cognitive load necessary to understand the complicated OPD at the expense of adding a new 4198
OPD to the OPD set, which is the result of the subsequent new-diagram in-zooming. 4199

Figure C.21 — Simplifying an OPD, demonstrates in-diagram out-zooming followed by new-diagram out-4200
zooming. On the left is the original OPD Set with three OPDs: SD, SD1 and SD1.1. The modeller deems SD1 4201
overly complicated. To ease the complication, as shown in the middle, the modeller selects P1, P2, and P3, 4202
along with BP for replacement by P123 using new-diagram out-zooming. On the right is the new OPD Set with 4203

ISO/PDPAS 19450

142 © ISO 2014 – All rights reserved

four OPDs renumbered to reflect the new hierarchy. The new SD1 is less complicated than the original SD1, 4204
having five fewer elements (three processes, one object, and two links removed; one process—P123—added). 4205
P123 undergoes new-diagram out-zooming in the new SD1.1, and this new OPD is inserted into the process 4206
hierarchy, pushing the old SD1.1 to become the new SD1.1.1. 4207

 4208

Figure C.21 — Simplifying an OPD 4209

In-diagram out-zooming begins by selecting the set TO of things to out-zoom in the currently complicated 4210
OPD for in-zooming in a new OPD. Assuming a new single process, PA, replaces the TO set, each procedural 4211
link that extends to a member of TO needs to connect to the new process, PA, and to an object that is not a 4212
member of the set TO. PA is a new abstract process that replaces the members of TO and becomes a new 4213
model element. PA becomes in-zoomed in a new OPD and the OPD set labelling needs to reflect the new 4214
OPD hierarchy. 4215

In the middle of Figure C.21 — Simplifying an OPD the processes P1, P2, and P3, along with the object BP 4216
are the four members of TO, which are surrounded by P123. The consequence of creating P123 is the 4217
disappearance of the four members of TO from the new SD1. Each link that crosses the grey-white boundary 4218
of the middle graphic now connects to the boundary of P123 in the new SD1. The objects connecting to the 4219
boundary of P123 in the new SD1 then connect to the appropriate subprocesses in the new SD1.1 The object 4220
BK cannot be a member of TO because if BK occurs in P123 its links create two procedural links connecting 4221
two processes directly, P4 to P123 and P123 to P5. OPM does not define the semantics of these links and the 4222
model would violate the specification that every procedural link (except the invocation and time exception 4223
links) connects an object to a process. 4224

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 143

C.6 OPM Process Performance Controlling model 4225

C.6.1 OPM Process Performance Controlling System - SD 4226

 4227
Involved Object Set consists of Preprocess Object Set and Postprocess Object Set. 4228
Preprocess Object Set exhibits Size. 4229
Size of Preprocess Object Set is r>=0. 4230
Postprocess Object Set exhibits Size. 4231
Size of Postprocess Object Set is s>=0. 4232
Involved Object Set exhibits Size. 4233
Size of Involved Object Set is r+s>=0. 4234
Process Performance Controlling affects Involved Object Set. 4235
Executable Process is environmental. 4236
Executable Process invokes Process Performance Controlling. 4237
Process Performance Controlling yields one of Success Message or Failure Message. 4238
Abort Message and Cancel Message are Failure Messages. 4239

Figure C.22 — Process Performance Controlling system diagram – SD 4240

ISO/PDPAS 19450

144 © ISO 2014 – All rights reserved

C.6.2 Process Performance Controlling in-zoomed as SD1 4241

 4242
Process Performance Controlling zooms into Process Initiating and Process Performing in that sequence, 4243

 as well as Postcondition. 4244
Preprocess Object Set consists of Consumee Set, Affectee Set, and Enabler Set. 4245
Postprocess Object Set consists of Resultee Set and Affectee Set. 4246
Executable Process is environmental. 4247
Executable Process invokes Process Initiating. 4248
Process Performance Controlling exhibits Process Status. 4249
Process Status can be idle, started (t=0), aborted, or completed (t=n). 4250
Process Status is initially idle and finally completed (t=n) or aborted. 4251
Postcondition can be false or true. 4252
Postcondition is initially false. 4253
Process Initiating requires Preprocess Object Set. 4254
Process Initiating changes Process Status from idle to one of idle or started (t=0). 4255
Process Initiating yields false Postcondition and Cancel Message. 4256
Process Performing occurs if Enabler Set exists, otherwise Process Performing is skipped. 4257
Process Performing affects Postcondition and Affectee Set. 4258
Process Performing changes Process Status from started (t=0) to one of aborted or completed (t=n). 4259
Process Performing yields Resultee Set and either Success Message or Abortion Message. 4260

Figure C.23 — Process Performance Controlling from SD in-zoomed in SD1 4261

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 145

C.6.3 Process Initiating in-zoomed as SD1.1 4262

 4263
Process Initiating from SD1 zooms in SD1.1 into Precondition Evaluating and parallel Cancelling 4264

 and Starting, in that sequence, as well as Precondition. 4265
Process Status can be idle, started (t=0), or other states. 4266
Process Status is initially idle. 4267
Postcondition can be false or true. 4268
Postcondition is initially false. 4269
Executable Process is environmental. 4270
Executable Process invokes Precondition Evaluating. 4271
Precondition Evaluating yields Precondition. 4272
Precondition can be true or false. 4273
Precondition Evaluating requires Preprocess Object Set. 4274
Precondition Evaluating changes Process Status from idle. 4275
Cancelling occurs if Precondition is false, otherwise Cancelling is skipped. 4276
Cancelling changes Process Status to idle. 4277
Cancelling yields Cancel Message. 4278
Cancellation Message exhibits Failure time. 4279
Cancelling sets the value of Failure time to t=0. 4280
Failure time of Cancel Message is t=0. 4281
Starting occurs if Precondition is true, in which case Precondition is consumed, otherwise Starting is skipped. 4282
Starting changes Process Status to started (t=0). 4283
Starting yields false Postcondition. 4284

Figure C.24 — Process Initiating in-zoomed as SD1.1 4285

ISO/PDPAS 19450

146 © ISO 2014 – All rights reserved

C.6.4 Precondition Evaluating in-zoomed as SD1.1.1 4286

 4287
Precondition Evaluating from SD1.1 zooms in SD1.1.1 into Enabler Set Checking, 4288

 Consumee & Affectee Set Checking, Precondition Refuting, and Precondition Confirming in that sequence,4289
 as well as Enabler Set Check Result and Consumee & Affectee Set Check Result. 4290

Preprocess Object Set consists of Enabler Set and Consumee & Affectee Set. 4291
Process Status can be idle, started (t=0), or other states. 4292
Process Status is initially idle. 4293
Precondition can be false or true. 4294
Precondition is initially false. 4295
Executable Process invokes Enabler Set Checking. 4296
Enabler Set Checking requires that Enabler Set exists, otherwise Enabler Set Checking is skipped. 4297
Enabler Set Checking changes Process Status from idle. 4298
Enabler Set Check Result can be positive or negative. 4299
Enabler Set Check Result is initially positive. 4300
Enabler Set Checking affects Enabler Set Check Result. 4301
Consumee & Affectee Set Checking occurs if Enabler Set Check Result is positive 4302

 and Consumee & Affectee Set exists, otherwise Consumee & Affectee Set Checking is skipped. 4303
Consumee & Affectee Set Check Result can be positive or negative. 4304
Consumee & Affectee Set Check Result is initially positive. 4305
Consumee & Affectee Set Checking affects Consumee & Affectee Set Check Result. 4306
Precondition Refuting requires that either Enabler Set Check Result is negative 4307

 or Consumee & Affectee Check Result is negative, otherwise Precondition Refuting is skipped. 4308
Precondition Refuting changes Process Status to idle. 4309
Precondition Confirming occurs if Transformee Check Result is positive, 4310

 otherwise Precondition Confirming is skipped. 4311
Precondition Confirming changes Precondition from false to true and Process Status to started (t=0). 4312

Figure C.25 — Precondition Evaluating in-zoomed – SD1.1.1 4313

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 147

C.6.5 Transformee Set Checking in-zoomed as SD1.1.1.1 4314

 4315
Consumee & Affectee Set Checking from SD1.1.1 zooms in SD1.1.1.1 into Consumee Set Checking, 4316

 Affectee Set Checking, and Transformee Set Disqualifying in that sequence, 4317
 as well as Affectee Set Check Results and Consumee Set Check Results. 4318

Enabler Set Check Result can be negative or positive. 4319
Enabler Set Check Result is initially positive. 4320
Consumee & Affectee Set Check Result can be negative or positive. 4321
Consumee & Affectee Set Check Result is initially positive. 4322
Consumee & Affectee Set consists of Consumee Set and Affectee Set. 4323
Consumee & Affectee Set Checking occurs if Enabler Set Check Result is positive, 4324

 otherwise Consumee & Affectee Set Checking is skipped. 4325
Consumee Set Check Results can be negative or positive. 4326
Consumee Set Check Results is initially positive. 4327
Consumee Set Checking occurs if Consumee Set exists, otherwise Consumee Set Checking is skipped. 4328
Consumee Set Checking affects Consumee Set Check Results. 4329
Affectee Set Checking occurs if Consumee Set Consumee Set Check Results is positive 4330

 and Affectee Set exists, otherwise Affectee Set Checking is skipped. 4331
Affectee Set Checking yields Affectee Set Check Results. 4332
Affectee Set Check Results can be negative or positive. 4333
Transformee Set Disqualifying occurs if either Affectee Set Check Results is negative 4334

 or Consumee Set Check Results is negative. 4335
Transformee Set Disqualifying changes Consumee & Affectee Set Check Result from positive to negative. 4336

Figure C.26 — Transformee Set Checking in-zoomed – SD1.1.1.1 4337

ISO/PDPAS 19450

148 © ISO 2014 – All rights reserved

C.6.6 Process Performing in-zoomed as SD1.2 4338

 4339
Process Performing from SD1 zooms in SD1.2 into Initial Process Performing, Main Process Performing, 4340

 and Final Process Performing in that sequence. 4341
Process Status can be idle, started (t=0), operating (t<n), aborted, completing (t=n), completed (t=n), 4342

 or other states. 4343
Process Status is finally completed (t=n). 4344
Postcondition can be false or true. 4345
Postcondition is initially false. 4346
Affectee Set consists of optional Affectees. 4347
Affectee can be input state or output state. 4348
Affectee is initially input state and finally output state. 4349
Initial Process Performing changes Process Status from started (t=0) to operating (t<n), 4350

 Postcondition from false, and Affectee from input state. 4351
Initial Process Performing consumes Consumee Set. 4352
Main Process Performing requires Enabler Set. 4353
Main Process Performing yields an optional Abort Message. 4354
Main Process Performing changes Process Status from operating (t<n) to one of completing (t=n) or aborted. 4355
Final Process Performing changes Process Status from completing (t=n) to completed (t=n), 4356

 Postcondition to true, and Affectee to output state. 4357
Final Process Performing yields Success Message and Resultee Set. 4358

Figure C.27 — Process Performing in-zoomed – SD1.2 4359

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 149

C.6.7 Initial Process Performing in-zoomed as SD1.2.1 4360

 4361
Initial Process Performing from SD1.2 zooms in SD1.2.1 into parallel Input State Exiting 4362

 and Consumee Set Consuming. 4363
Preprocess Object Set consists of Enabler Set, Affectee Set, and Consumee Set. 4364
Affectee Set consists of optional Affectees. 4365
Affectee can be input state or output state. 4366
Affectee is initially input state and finally output state. 4367
Process Status can be started (t=0), operating (t<0), or other states. 4368
Postcondition can be false or true. 4369
Postcondition is initially false. 4370
Initial Process Performing requires Enabler Set. 4371
Input State Exiting changes Affectee from input state. 4372
One of Consumee Set Consuming or Input State Exiting changes Process Status from started (t=0) 4373

 to operating (t<n) and Postcondition from false. 4374

Figure C.28 — Initial Process Performing in-zoomed – SD1.2.1 4375

ISO/PDPAS 19450

150 © ISO 2014 – All rights reserved

C.6.8 Main Process Performing in-zoomed as SD1.2.2 4376

 4377
Main Process Performing from SD1.2 zooms in SD1.2.2 into Elapsed Time & Duration Comparing, 4378

 Enabler & Affectee Set Checking, Aborting & Notifying, Time Incrementing, and Finalizing, 4379
 in that sequence, as well as Time Comparison Result and Set Approval. 4380

Executable Process exhibits Executable Process Instruction Set and Overtime Exception Handling. 4381
Executable Process, Executable Process Instruction Set, and Overtime Exception Handling 4382

 are environmental. 4383
Process Status can be aborted, completed (t=n), operating (t<0) or other states. 4384
Process Status is finally aborted or completed (t=n). 4385
Postcondition can be false or true. 4386
Postcondition is initially false. 4387
Main Process Performing exhibits Elapsed Time in Time Unit and Duration in Time Unit. 4388
Abortion Message exhibits Elapsed Time in Time Unit. 4389
Elapsed Time in Time Unit is e. 4390
Duration in Time Unit is d. 4391
Elapsed Time & Duration Comparing requires Elapsed Time in Time Unit and Duration in Time Unit. 4392
Elapsed Time & Duration Comparing changes Postcondition from false. 4393
Elapsed Time & Duration Comparing yields Time Comparison Result. 4394
Time Comparison Result can be e<d, e=d, or e>d. 4395
Time Comparison Result is initially e<d or e=d and finally e=d or e>d. 4396
Enabler & Affectee Set Checking requires Enabler Set and Affectee Set. 4397
Enabler & Affectee Set Checking occurs if Time Comparison Result is e<d, 4398

 in which case Enabler & Affectee Set Checking consumes Time Comparison Result, 4399
 otherwise Enabler & Affectee Set Checking is skipped. 4400

Enabler & Affectee Set Checking requires Enabler Set. 4401
Enabler & Affectee Set Checking yields Set Approval. 4402
Set Approval can be granted or denied. 4403
Aborting & Notifying occurs if Set Approval is denied, in which case Aborting & Notifying consumes Set Approval, 4404

 otherwise Aborting & Notifying is skipped. 4405
Aborting & Notifying changes Process Status from operating (t<n) to aborted and Postcondition to false. 4406
Aborting & Notifying yields Abort Message. 4407

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 151

Abort Message Finalizing occurs if Time Comparison Result is e=d, in which case Finalizing 4408
 consumes Time Comparison Result, otherwise Finalizing is skipped. 4409

Finalizing changes Process Status from operating (t<n) to completed (t=n) and Postcondition to true. 4410
Process Executing & Time Incrementing requires Executable Process Instruction Set. 4411
Process Executing & Time Incrementing occurs if Set Approval is granted, 4412

 in which case Process Executing & Time Incrementing consumes Set Approval, 4413
 otherwise Process Executing & Time Incrementing is skipped. 4414

Time Incrementing consumes Sets are OK?. 4415
Time Incrementing yields elt=1..ext Elapsed Time in Time Unit. 4416
Process Executing & Time Incrementing changes the value e of Elapsed Time in Time Unit. 4417
Process Executing & Time Incrementing invokes Elapsed Time & Duration Comparing. 4418
Overtime Exception Handling consumes e>d Time Comparison Result. 4419

Figure C.29 — Main Process Performing in-zoomed – SD1.2.2 4420

C.6.9 Final Process Performing in-zoomed as SD1.2.3 4421

 4422
Final Process Performing from SD1.2 zooms in SD1.2.3 into parallel Resultee Set Generating, 4423

 Output State Entering, and Success Notifying, in that sequence. 4424
Postprocess Object Set consists of Resultee Set and Affectee Set. 4425
Affectee Set consists of optional Affectees. 4426
Affectee can be input state or output state. 4427
Affectee is initially input state and finally output state. 4428
Process Status can be completed (t=n), completing (t=n), or other states. 4429
Process Status is finally completed (t=n). 4430
Postcondition can be false or true. 4431
Postcondition is initially false. 4432
Resultee Set Generating yields Resultee Set. 4433
Output State Entering changes Affectee to output state. 4434
Success Notifying changes Postcondition to true. 4435
Success Notifying yields Success Message. 4436

Figure C.30 — Final Process Performing in-zoomed – SD1.2.3 4437

 4438

ISO/PDPAS 19450

152 © ISO 2014 – All rights reserved

Annex D 4439

(informative) 4440

 4441

OPM dynamics and simulation 4442

D.1 OPM executability 4443

An OPM model provides for executability—the ability to simulate a system by executing its model via 4444
animation in a properly designed software environment. 4445

D.2 Change and effect 4446

A change of an object is an alteration in the state of that object. More specifically, a change of an object is 4447
reflected by replacing its current state by another state. The only thing that can cause this change is a process. 4448
The process causes the change by taking as input an object at some state, and outputting it in another state. 4449
Hence, a change of an object means a change in the state at which the object is at. 4450

Stateful objects can be affected, i.e. their states can change. This change mechanism underlines the intimate, 4451
inseparable link between objects and processes. This change in state is the effect of the process on the object. 4452

Effect is therefore defined as the change in the state of an object that a process causes. 4453

While the terms "change" and "effect" are almost synonymous, there is a subtle difference in their usage. 4454
Effect Is used to refer to what the process does to the object, and change—to what happens to the object as a 4455
result of the process occurrence. Later in this section the above definition of effect is refined with the notions 4456
of input and output links. 4457

D.3 Existence and transformation 4458

Change is only one possibility of what can happen to an object when a process acts on it. A process affects 4459
an object to change it, but it can also do things that are more drastic: it can generate an object or consume it. 4460
The term transformation covers these three additional modes by which a process can act on an object: 4461
construction, effect, and consumption. 4462

Construction is synonymous with creation, generation, or yielding. Effect is synonymous with change or switch, 4463
and consumption is synonymous with elimination, termination, annihilation, or destruction. The effect of a 4464
process on an object is to change that object from one of its states to another, but the object still exists, and it 4465
keeps maintaining the identity it had before the process occurred. Construction and consumption change the 4466
very existence of the object and are therefore more profound transformations than effect. 4467

When a process constructs (yields, generates, creates, or results in) an object, the meaning is that the object, 4468
which had not previously existed, has undergone a radical transformation. This transformation made it stand 4469
out and become identifiable and meaningful in the system. It now deserves treatment and reference as a new, 4470
separate entity. 4471

When a process consumes (eliminates or destroys) an object, the meaning is that the object, which had 4472
previously existed, and was identifiable and meaningful in the system, has undergone a radical transformation. 4473
Consequently, the object no longer exists in the system and is no longer identifiable. 4474

D.4 Timeline OPM principle 4475

By default the execution timeline within an in-zoomed process begins at the graphical top and ends at the 4476
graphical bottom unless there is indication to deviate from the timeline. Such indications include the special 4477
OPM process Exiting, discussed below, and internal events within the scope of the process that can cause 4478
loops. 4479

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 153

The top-most point of the process ellipse serves as a reference point, so a process whose reference point is 4480
higher that its peer(s) starts earlier. If the reference points of two or more processes are at the same height 4481
(within a few graphical units, e.g pixels, of tolerance), these processes start simultaneously and in parallel. 4482

D.5 Timed events 4483

The events presented so far were object or state events: they happened when a specific object became 4484
existent or entered a specific state. In contrast, timed events depend on the arrival of a specific time in the 4485
system, as shown below. 4486

A state event can represent a time event, as Figure D.1 — Legal system model change from minor to adult at 4487
the Age of 18 Years demonstrates. 4488

 4489

Figure D.1 — Legal system model change from minor to adult at the Age of 18 Years 4490

 4491

Figure D.2 — The System Clock event initiating Legal Status Changing 4492

D.6 Object history and the lifespan diagram 4493

At any point in time, an object can be in one of its states, or exists in transition between two states. 4494

ISO/PDPAS 19450

154 © ISO 2014 – All rights reserved

A lifespan diagram is a diagram showing for any point in time during the life of the system what objects exists 4495
in the system, what state each object is at, and what processes are active. 4496

 4497

 4498

 4499

 4500

Figure D.3 — Car Painting four lifespan diagrams example 4501

The four lifespan diagrams shown at Figure D.3 — Car Painting four lifespan diagrams example record the 4502
history of the car painting system as time progresses. These four lifespan diagrams are displayed stacked 4503
vertically to facilitate their inspection. In the first diagram, only the first time period is displayed. Painting is not 4504
active, and the Car is white. 4505

In the second diagram, the first three time periods are displayed. In the third period, Painting is active, and the 4506
Car is no longer white. The same happens in the fourth period, as shown in the third diagram. Finally, in the 4507
fifth period, shown in the bottom diagram, Painting is no longer active, and the Car is red. 4508

 4509

Figure D.4 — Executing the OPM model for Automatic Crash Responding 4510

Figure D.4 — Executing the OPM model for Automatic Crash Responding presents three OPCAT screenshots, 4511
showing three stages of executing an OPM model. The screenshot on the left hand side shows the system 4512
before the Automatic Crash Responding process occurs. At this stage, Vehicle Occupants Group is at its 4513
input state, possibly injured, and this is marked by the state being solid (coloured brown). 4514

The middle screenshot shows the process in action, marked as solid (coloured blue). During the time that the 4515
process Automatic Crash Responding is active (i.e. when it executes), the object Vehicle Occupants 4516
Group is in transition from its input state, possibly injured, to its output state, being helped. This is marked 4517
by both states being semi-solid. 4518

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 155

Observing the animation in action, the input state is gradually fading out while the output state is becoming 4519
solid. At the same time, two red dots travel along the input-output link pair, denoting the "control" of the system, 4520
or where the system is at each time point. One red dot travels from the input state to the affecting process. At 4521
the same time, the second dot travels from that process along the output link to the output state. 4522

Finally, the screenshot on the right shows the system after the Automatic Crash Responding process had 4523
terminated. At this stage, Vehicle Occupants Group is at its output state, being helped. 4524

The animated execution of the system model has several benefits. First, it is a dynamic visualization aid that 4525
helps both the modeller and the target audience follow and understand the behaviour of the system over time. 4526
Second, like a debugger of a programming language, it facilitates verification of the system's dynamics and 4527
spotting logical design errors in its flow of execution control. Therefore, frequently animating the system model 4528
during its construction is highly recommended. 4529

D.7 Process duration 4530

System time unit is the default time unit used for specifying all duration kinds of all the processes in the 4531
system unless there is an explicit different time unit for a specific process, in which case that time unit 4532
overrides the system time unit. 4533

A compact way to express the relevant process property values in an OPD uses exhibition-characterization 4534
and specialization links. Assuming that the following are relevant process properties, EXAMPLE 1 expresses 4535
two ways to graphically configure the properties: 4536

 the time measurement unit; 4537

 time duration parameters, which can be one of the following: 4538

 three values, standing for the minimal, expected, and maximal duration, respectively, 4539

 two values, standing for the minimal and maximal duration, respectively, or 4540

 one value, standing for both the minimal and maximal durations; and, 4541

 the duration distribution name and its one or more parameters. 4542

The following are possible normative distributions and their parameter(s): 4543

 Normal, mean=xx; sd=yy; 4544

 Uniform, a=xx, b=yy; and, 4545

 Exponential, lambda=xx. 4546

NOTE The time measurement unit of seconds, abbreviated as sec, is the customary default and often 4547
omitted. 4548

EXAMPLE 1 is a metamodel of Processing Duration with property values. On the left is the complete metamodel. The 4549
process on the right shows a compact way to record all the data on the left, except for the (actual) Duration, which is a run-4550
time property. The Duration Distribution in this example is normal with mean 45.6 minutes and standard deviation 7.3 4551
minutes. 4552

ISO/PDPAS 19450

156 © ISO 2014 – All rights reserved

 4553
Processing exhibits 30.0, 45.6, and 60.0 min Minimal Duration, Expected Duration, and Maximal Duration, respectively and normal 4554
Duration Distribution with parameters mean=45.6 and sd=70.0. 4555

Figure D.5 — Processing Duration with property values 4556

EXAMPLE 2 4557

 4558

Processing exhibits 8.0 and 10.0 hour Processing exhibits normal Duration Processing exhibits uniform Duration 4559
Minimal Duration and Maximal Distribution with parameters Distribution with parameters 4560
Duration, respectively, and mean=1.63 and sd=0.16 ms. a=3 and b=5 days. 4561
exponential Duration Distribution 4562
with parameter lambda=5.6. 4563

Figure D.6 — Process duration examples 4564

EXAMPLE 3 In Figure D.7 — Overtime exception example, Processing {instance id=1} Duration is 63.3 min, hence 4565
Overtime Exception Handling occurs. 4566

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 157

Processing exhibits 30.0, 45.6, and 60.0 min Minimal Duration, Expected Duration, 4567
and Maximal Duration, respectively, and uniform Duration Distribution with parameters a=5.0 and b=70.0. 4568

Either Processing or Overtime Exception Handling affects Affectee. 4569
Overtime Exception Handling occurs if duration of Processing exceeds 60.0 min. 4570
Overtime Exception Handling affects Affectee. 4571

Figure D.7 — Overtime exception example 4572

EXAMPLE 4 In Figure D.8 — Undertime exception example, Processing {instance id=2} Duration is 23.4 min, hence 4573
Undertime Exception Handling occurs. 4574

 Processing exhibits 30.0, 45.6, and 60.0 min Minimal Duration, Expected Duration, 4575
and Maximal Duration, respectively, and uniform Duration Distribution with parameters a=5.0 and b=70.0. 4576

Either Processing or Undertime Exception Handling affects Affectee. 4577
Undertime Exception Handling occurs if duration of Processing falls short of 60.0 min. 4578
Undertime Exception Handling affects Affectee. 4579

Figure D.8 — Undertime exception example 4580

 4581

ISO/PDPAS 19450

158 © ISO 2014 – All rights reserved

Annex E 4582

(informative) 4583

 4584

Graph grammar of OPM 4585

E.1 Graph grammar overview 4586

An OPD graph is a bipartite graph with two node kinds, objects and processes, connected by various kinds of 4587
edge, i.e., links. Annex F describes a graph grammar for the creation of valid diagrams in the Object-Process 4588
Methodology visual modelling notation (Object-Process Diagrams). 4589

Graph Grammars (or Graph Transformations) is a field of Graph Theory that formalizes the creation or 4590
transformation of graphs using predefined transformation rules. Informally, a graph grammar consists of a set 4591
of productions that, when applied to a diagram, add to or modify the diagram. A production consists of a 4592
source and target graphs and a morphism that defines the transformation from the source graph to the target 4593
graph. Figure E.1 — Example of graph production shows an example of a production. 4594

Production:

Consumption Link Insertion

Figure E.1 — Example of graph production 4595

The production shown in the example describes a production to create a consumption link between an object 4596
and a process. Figure E.2 — Base diagram for use of a production show a base OPD diagram for application 4597
of the product, sometimes referred to as a derivation, from Figure E.1 — Example of graph production. 4598

1G =

Object1

Object2

Object3

Process1

Process2

Figure E.2 — Base diagram for use of a production 4599

To apply the production, one matches the elements in the source graph of the production with elements in the 4600
existing OPD. Following OPD conventions, O matches to Object1, Object2, and Object3. P matches in a 4601
similar fashion. After selecting a match (many matches can be found, therefore one is chosen), the production 4602
is applied to the OPD. Suppose selection of the pair Object1, Process1 occurs, then the derivation changes 4603
the OPD by adding it a new consumption link as shown in Figure E.3 — Applying a production to a diagram. 4604

P

O

P

O

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 159

2G =

Object1

Object2

Object3

Process1

Process2

Figure E.3 — Applying a production to a diagram 4605

Productions may be conditional, so that their application is constrained by the current context of application. 4606
Given that OPM does not allow for two consumption links between an object and a process, the graph 4607
grammar defines a conditional production as show in Figure E.4 — Graph grammar constraint for 4608
consumption link. This production defines that a new consumption link can occur between an object and a 4609
process, but only when this link does not exist already (as shown by the shadowed link in the source of the 4610
production). 4611

Production:

Consumption Link Insertion
P

O

P

O

Figure E.4 — Graph grammar constraint for consumption link 4612

A partial graph grammar for the creation of OPDs is defined in [4] and a short description of the grammar 4613
defined there will be shown below. 4614

NOTE The reader interested in the complete definition is invited to read the original source. Also, more information on 4615
Graph Grammars can be found in (Corradini, A.; Ehrig, H.; Heckel, R.; Korff, M.; Lowe, M.; Ribeiro, L. & Wagner, A. (1997), 4616
Algebraic Approaches to Graph Transformation - Part I: Single Pushout Approach and Comparison with Double Pushout 4617
Approach, in G. Rozenberg, ed.,'Handbook of Graph Grammars and Computing by Graph Transformation. Vol. I: 4618
Foundations', World Scientific, pp. 247-312) and (Ehrig, H.; Heckel, R.; Korff, M.; Lцwe, M.; Ribeiro, L.; Wagner, A. & 4619
Corradini, A. (1997), Algebraic approaches to graph transformation. Part II: single pushout approach and comparison with 4620
double pushout approach, in 'Handbook of Graph Grammars and Computing by Graph Transformation. Vol. I: 4621
Foundations', World Scientific, pp. 247-312.) 4622

E.2 Using graph grammars in OPD 4623

E.2.1 Proactive and reactive stages 4624

The creation of an OPD using graph grammars occurs in two stages: proactive and reactive. In the proactive 4625
stage the user creates a diagram following the graph grammar rules outlined in this Annex. The proactive 4626
creation process allows for temporary inconsistencies in the OPD, which enable easy modelling while 4627
maintaining a general consistency in the diagram. After creating a model, the modeller can apply the reactive 4628
stage, which validates that the existing OPD is completely valid. Because the reactive stage is applicable 4629
anytime during the modelling process, the determination of the validity of every change to the diagram is 4630
possible. 4631

ISO/PDPAS 19450

160 © ISO 2014 – All rights reserved

This Annex presents a number of preliminary definitions useful in both the proactive and reactive stages of 4632
OPD creation, then identifies the proactive stage as OPD Creation, and finally describes the reactive stage as 4633
OPD Validation. 4634

E.2.2 Preliminary definitions 4635

E.2.2.1 Abstract link 4636

An abstract link is an OPM link that stands for any type of concrete link that can connect two element in the 4637
model. Its graphical representation is a straight line drawn between the two elements, as shown Figure E.5 — 4638
Abstract link between two things, and a state and a thing. 4639

Thing1

Thing2

Object

Thing

State

Figure E.5 — Abstract link between two things, and a state and a thing 4640

An abstract link is undirected, unless an open arrow appears ends. Since in OPM this is the symbol for the 4641
tagged structural relation, the tagged structural relations symbol changes to a double arrowhead by using the 4642
relevant rule to remove the ambiguity. 4643

For convenience, an abstract link specializes into an abstract structural or procedural link by adding the letter 4644
“s” or “p” to the link. 4645

E.2.2.2 Modelling conventions 4646

The remainder of this Annex uses the following notational conventions: 4647

 A negative constraint appears as shaded areas in the appropriate context within the left-hand graph of the 4648
production. 4649

 Elements in the rules are named as follows: 4650

 Thing: T (if only one appearance exists in the OPD), T1, T2 ... 4651

 Object: O (only one appearance), O1, O2 ... 4652

 Process: P (only one appearance), P1, P2 ... 4653

 States: s (only one appearance), s1, s2 ... 4654

E.2.3 OPD creation – productions 4655

This section shows the 13 primary productions for use to build an OPD from scratch. 4656

1) Thing creation: add new things to the OPD for two situations – 4657

i) If there is no thing with the same name as the thing added. 4658

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 161

T

 T

Figure E.6 — Creating a new thing production 4659

ii) If there is a thing with the same name but the existing thing has a structural parent defined in the 4660
OPD. 4661

T1T1

T2

s

T1 T1T1

T2

s

Figure E.7 — Creating the same thing twice production 4662

2) State creation: add a state to an existing object. 4663

O

S

O

S

Figure E.8 — Creating an object state production 4664

3) State removal: remove a state from an existing object, which is only possible if the state has no link 4665
to another thing in the OPD. 4666

O

S

T

O

Figure E.9 — Removing an object state production 4667

4) Thing removal: remove a thing from the OPD, which is only possible if the thing is not linked to 4668
another thing in the OPD. 4669

T1

T

Figure E.10 — Removing an object production 4670

ISO/PDPAS 19450

162 © ISO 2014 – All rights reserved

5) Homogeneous structural link creation: these link productions connect things with the same 4671
persistence: Aggregation-Participation, Generalization-Specialization and Classification-Instantiation. 4672

O1

O2

s

O1

O2

O1

O2

s

O1

O2

O1

O2

s

O1

O2

P1

P2

s

P1

P2

P1

P2

s

P1

P2

P1

P2

s

P1

P2

O2

O1

O2

O1

P1

P2

P1

P2

Figure E.11 — Structural link productions 4673

6) Aggregation loop creation: the Aggregation-Participation link enables use to link an object to itself. 4674

Figure E.12 — Aggregation loop link production 4675

7) Generalization and Aggregation pair creation: the Aggregation-participation and the Generalization-4676
Specialization link enables link co-exist together between two objects. 4677

O1

O2

O1

O2

Figure E.13 — Generalization and aggregation pair creation production 4678

O1
O1

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 163

8) Non-homogeneous structural link creation: the Exhibition-Characterization link enables the 4679
connection of two things of any persistence. 4680

T1

T2

s

T1

T1

Figure E.14 — Production for Exhibition-Characterization link between things of same persistence 4681

9) Object-to-Process link creation: create agent, instrument and consumption links between an object 4682
and a process. 4683

O Pp

 O P

O Pp

 O P

O Pp

 O P

Figure E.15 — Object to process link creation production 4684

10) Process-to-object link creation: create a result link between a process and an object. 4685

OP p

 OP

Figure E.16 — Process to object link creation production 4686

11) Bi-directional procedure link creation: create an effect link between an object and a process. 4687

O Pp

 O P

Figure E.17 — Bi-directional procedural link creation production 4688

12) Invocation link creation: create an invocation link between two processes. 4689

PP p

 PP

ISO/PDPAS 19450

164 © ISO 2014 – All rights reserved

Figure E.18 — Invocation link creation production 4690

13) Link removal: remove an existing link between two things. 4691

T1 T2

 T1 T2

Figure E.19 — Link removal between two things 4692

E.2.4 OPD validation 4693

E.2.4.1 Validation overview 4694

The validation of an existing OPD occurs by iteratively removing information from the OPD while maintaining 4695
its semantic validity (“abstracting” the OPD contents). Figure E.20 — Abstracting part consumption to effect on 4696
whole, depicts from left to right, an abstraction process abstracting details of O2. 4697

O1

O2

P1

O1

O2

P1

 O1 P1

Figure E.20 — Abstracting part consumption to effect on whole 4698

The left OPD shows that P1 consumes O2, which is a part of O1. By OPM semantics, this means that P1 4699
changes O1, which is shown in the middle OPD. And finally, the removal of O2 reduces the amount of 4700
information in the OPD but maintains semantic validity. 4701

During every abstraction step the validation algorithm checks for invalid constructs – a set of elements in the 4702
diagram that has invalid semantics. The diagram shown in Figure E.21 — An invalid link construction depicts 4703
an invalid construct, because while Process1 consumes Object2, its parent, Object1, which abstracts it, is 4704
linked to Process1 by only an agent link, which means that the process does not change the object. 4705

Object1

Object2

Process1

Figure E.21 — An invalid link construction 4706

E.2.4.2 Validation algorithm 4707

An OPD validation algorithm appears below. Since the number of abstraction productions and invalid 4708
constructs is very large, this Annex does not provide them all. 4709

1) Calculate Type and Type Closure of all things in the OPD. 4710

2) Validate all Process signatures by applying the Signature Consistency Validation algorithm. If 4711
validation failed, stop and return failure on signature validation. 4712

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 165

3) While OPD contains things that have not been processed: 4713

i) Of all things in the current OPD select thing with max(height(thing)) and no outgoing structural 4714
links. 4715

ii) Transform all Temporary Links that start at thing to Regular Links. 4716

iii) Apply State Change Abstraction production to thing if applicable, as many times as possible. 4717

iv) Apply State-Specified Link Abstraction production to thing if applicable, as many times as 4718
possible. 4719

v) Apply Procedural Abstraction productions to thing if applicable, as many times as possible. 4720

vi) Check Illegal Constructs on thing. If illegal constructs exist, stop and return failure on thing. 4721

vii) Apply Thing Removal production to thing if applicable. If the production is not applicable, mark 4722
thing as processed. 4723

4) Transform all temporary links in the OPD to regular links. 4724

5) End. 4725

E.2.4.3 Example ABS braking OPD abstraction 4726

In this abstraction sequence, the ABS Ford system depicted in Figure E.22 — OPD for validation, reduces in 4727
detail to a less complicated OPD. The source OPD appears flattened to remove in-zooming. 4728

ABS

Braking
ABS

Brake

Assembly

Mechanical

Subsystem

Hydraulic

Subsystem

Sensor

Subsystem

Engine

Control Unit

Power

Management

System
Velocity

Driver

Passive Active

High Zero

Braking

Boosting Signal

Detecting

Anti

Locking

Actuating

Signal

Set

Actuating

Pulse Set

Figure E.22 — OPD for validation 4729

Since the OPD for validation has no generalization or classification links in the diagram, the first step is to 4730
apply the abstraction steps. Check all the objects for removal of detail and then all the processes, beginning 4731
with object Brake Assembly. 4732

ISO/PDPAS 19450

166 © ISO 2014 – All rights reserved

The first task is to transform all temporary links. Since there are none, this step is complete. The next task is to 4733
apply State Change Abstraction to Brake Assembly using the link that starts at state Passive and ends at 4734
Braking, and the link that starts at Braking and ends at state Active as shown in Figure E.23 — State change 4735
abstraction. Since most of the remainder of the diagram remains the same, only the affected part appears. 4736

Brake

Assembly
Passive Active Braking

Brake

Assembly
Braking

Figure E.23 — State change abstraction 4737

The next task is to apply State-Specified Link abstraction. Two links begin at a state of Brake Assembly, one 4738
from state Active and ends at Boosting and the other from state Active and ends at Signal Detecting. The 4739
result of this task (once again removing unnecessary parts of the diagram) is shown in Figure E.24 — State-4740
specified link abstraction. 4741

Brake

Assembly

Boosting

Signal

Detecting

Active

Brake

Assembly

Boosting

Signal

Detecting

Figure E.24 — State-specified link abstraction 4742

The next task is Procedural Abstraction. The procedural links that connect Brake Assembly to all other things 4743
in the diagram are "transferred" to its structural parent, which is ABS. The diagram then appears as shown, 4744
after removing the irrelevant elements, in Figure E.25 — Procedural abstraction. 4745

Brake

Assembly

Braking

Boosting

Signal

Detecting

ABS

Figure E.25 — Procedural abstraction 4746

The first link to abstract is the link to Boosting. The matching production for this case is Promotion of Part 4747
Instrument to Aggregate Instrument, as shown in Figure E.26 — Promotion of part instrument to aggregate 4748
instrument production. 4749

O1

O2

P

O1

O2

P

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 167

Figure E.26 — Promotion of part instrument to aggregate instrument production 4750

Applying the production produces the diagram shown in Figure E.27 — Applying promotion production to 4751
Brake Assembly 4752

Brake

Assembly
Braking

Boosting

Signal

Detecting

ABS

Figure E.27 — Applying promotion production to Brake Assembly 4753

Using similar productions, the links from Brake Assembly to Braking and Signal Detecting create the diagram 4754
shown in Figure E.28 — Abstracting ABS links. 4755

Brake

Assembly

Braking

Boosting

Signal

Detecting

ABS

Figure E.28 — Abstracting ABS links 4756

Since no illegal constructs are detected on Brake Assembly, the next task is Thing Removal. The result of the 4757
first round of the algorithm is shown in Figure E.29 — Removing disconnected things. 4758

ISO/PDPAS 19450

168 © ISO 2014 – All rights reserved

ABS

Braking
ABS

Mechanical

Subsystem

Hydraulic

Subsystem

Sensor

Subsystem

Engine

Control Unit

Power

Management

System

Velocity

Driver

High Zero

Braking

Boosting Signal

Detecting

Anti

Locking

Actuating

Signal

Set

Actuating

Pulse Set

Figure E.29 — Removing disconnected things 4759

A process is abstracted using the same steps used to abstract an object. The process Braking is abstracted 4760
next. After transforming the temporary links beginning at the process, the working diagram segment appears 4761
as Figure E.30 — Abstracting Braking process. 4762

ABS

Braking
ABS

Mechanical

Subsystem
Driver

Braking

Figure E.30 — Abstracting Braking process 4763

The tasks used to abstract a process are in general fewer than those used to abstract an object since a 4764
process does not contain states. Hence, the first task is Procedural Abstraction. After the application of the 4765
production, the diagram appears as shown in Figure E.31 — Procedural abstracting to ABS Braking. 4766

ABS

Braking
ABS

Mechanical

Subsystem

Driver

Braking

Figure E.31 — Procedural abstracting to ABS Braking 4767

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 169

The next task is to remove Braking from the full diagram, yielding the diagram shown in Figure E.32 — 4768
Removing Braking from abstraction. 4769

ABS

Braking
ABS

Mechanical

Subsystem

Hydraulic

Subsystem

Sensor

Subsystem

Engine

Control Unit

Power

Management

System

Velocity

Driver

High Zero

Boosting

Signal

Detecting

Anti

Locking

Actuating

Signal

Set

Actuating

Pulse Set

Figure E.32 — Removing Braking from abstraction 4770

The abstraction process continues in the same way until there are no more things to abstract. Then, all the 4771
temporal links transform to regular links. The final diagram is shown in Figure E.33 — Final ABS Braking 4772
abstract process. 4773

ABS

Braking
ABS

Velocity

Driver

Figure E.33 — Final ABS Braking abstract process 4774

 4775

ISO/PDPAS 19450

170 © ISO 2014 – All rights reserved

Bibliography 4776

[1] ISO/TC 184/SC 5. Terms of Reference: Study Group to Explore OPM for Modeling Standards, 2009. 4777
http://forums.nema.org:443/upload/N1049_OPM_Study_Group_Terms_of_Reference.doc 4778

[2] ISO/TC 184/SC 5 N1070 Object Process Methodology Study Group – Interim Report 2010 4779

[3] ISO/TC 184/SC 5 N1111 Object Process Methodology Study Group – Final Report 2011 4780

[4] BIBLIOWICZ, A., A Graph Grammar-Based Formal Validation of an Object-Process Diagram, M. Sc. 4781
Thesis, Technion, Israel, 2008. 4782

[5] BIBLIOWICZ, A., and DORI, D., A Graph Grammar-Based Formal Validation of Object-Process 4783
Diagrams. Software and Systems Modeling, 11, (2) pp. 287-302, 2012. 4784

[6] CRAWLEY, E. F., MALMQVIST, J., ÖSTLUND, S., and BRODEUR, D. R., Rethinking Engineering 4785
Education: The CDIO Approach. Springer, 2007. 4786

[7] DORI, D., Object-Process Methodology - A Holistic Systems Paradigm. Berlin : Springer Verlag, 2002 4787

[8] DORI, D., Words from Pictures for Dual Channel Processing: A Bimodal Graphics-Text Representation 4788
of Complex Systems. Communications of the ACM, 51(5), pp. 47-52, 2008. 4789

[9] DORI, D., FELDMAN, R., and STURM, A., From conceptual models to schemata: An object-process-4790
based data warehouse construction method. Information Systems 33 (6), pp. 567-593, 2008. 4791

[10] DORI, D., Object-Process Analysis: Maintaining the Balance between System Structure and Behavior. 4792
Journal of Logic and Computation, 5, 2, pp. 227-249, 1995. 4793

[11] DORI, D., Object-Process Methodology – A Holistic Systems Paradigm, Springer Verlag, Berlin, 4794
Heidelberg, New York, 2002 (ISBN 3-540-65471-2; Foreword by Edward Crawley. 4795

[12] DORI, D., REINHARTZ-BERGER, I. and STURM, A. Developing Complex Systems with Object-4796
Process Methodology using OPCAT. LNCS 2813, pp. 570-572, 2003 4797

[13] DORI, D., ViSWeb – The Visual Semantic Web: Unifying Human and Machine Knowledge 4798
Representations with Object-Process Methodology. The International Journal on Very Large Data 4799
Bases (VLDB), 13, 2, pp. 120-147, 2004. 4800

[14] ESTEFAN, J., Survey of Model-Based Systems Engineering (MBSE) Methodologies 2 . 4801
Differentiating Methodologies from Processes, Methods, and Lifecycle Models. Jet Propulsion, 25, 1–4802
70, 2008. Retrieved from http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf 4803

[15] GROBSHTEIN, Y. and DORI, D., Generating SysML Views from an OPM Model: Design and 4804
Evaluation. Systems Engineering, 14 (3), pp. 327-340, 2011. 4805

[16] MYERSDORF, D., and DORI, D., The R&D Universe and Its Feedback Cycles: an Object-Process 4806
Analysis. R&D Management, 27, 4, pp. 333-344, 1997 4807

[17] OLIVER, D. W., ANDARY, J. F., and FRISCH, H., Model-based systems engineering. In Handbook of 4808
Systems Engineering and Management, pp. 1361-1400, 2009. 4809

[18] OSORIO, C. A., DORI, D., and SUSSMAN, J., COIM: An Object-Process Based Method for Analyzing 4810
Architectures of Complex, Interconnected, Large-Scale Socio-Technical Systems. Systems 4811
Engineering 14(3), 2011. 4812

http://forums.nema.org:443/upload/N1049_OPM_Study_Group_Terms_of_Reference.doc
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Edward%20F.%20Crawley&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Johan%20Malmqvist&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&field-author=S%C3%B6ren%20%C3%96stlund&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&field-author=Doris%20R.%20Brodeur&search-alias=books&sort=relevancerank
http://scholar.google.co.il/citations?view_op=view_citation&hl=en&user=oBVRXdAAAAAJ&citation_for_view=oBVRXdAAAAAJ:eQOLeE2rZwMC
http://scholar.google.co.il/citations?view_op=view_citation&hl=en&user=oBVRXdAAAAAJ&citation_for_view=oBVRXdAAAAAJ:eQOLeE2rZwMC
http://www.springerlink.com/media/CHBKUPQXULV5LU7PNQT1/Contributions/A/1/Y/9/A1Y9E34PBKD0P9KU.pdf
http://www.springerlink.com/media/CHBKUPQXULV5LU7PNQT1/Contributions/A/1/Y/9/A1Y9E34PBKD0P9KU.pdf
http://portal.acm.org/citation.cfm?id=988145.988147
http://portal.acm.org/citation.cfm?id=988145.988147

ISO/PDPAS 19450

© ISO 2014 – All rights reserved 171

[19] PELEG, M., and DORI, D., The Model Multiplicity Problem: Experimenting with Real-Time 4813
Specification Methods. IEEE Transaction on Software Engineering, 26, 8, pp. 742-759, 2000. 4814

[20] PELEG, M., SOMEKH, J., and DORI, D., A Methodology for Eliciting and Modeling Exceptions. Journal 4815
of Biomedical Informatics 42(4), pp. 736-747, 2009. 4816

[21] OPCAT, Enterprise Systems Modeling Laboratory, Technion, Haifa, Israel, 4817
http://esml.iem.technion.ac.il/opm/ 4818

[22] RAMOS, A. L., FERREIRA, J. V., BARCELÓ, J., LITHE: An Agile Methodology for Human-Centric 4819
Model-Based Systems Engineering. IEEE Transactions on Systems, Man, and Cybernetics - Part A: 4820
Systems and Humans, 2012. 4821

[23] REICHWEIN, A., and PAREDIS, C., Overview of Architecture Frameworks and Modeling Languages 4822
for Model-Based Systems Engineering. Proceedings of the ASME 2011 International Design 4823
Engineering Technical Conferences Computers and Information in Engineering Conference, 1-9, 2011. 4824

[24] REINHARTZ-BERGER, I., and DORI, D., A Reflective Metamodel of Object-Process Methodology: 4825
The System Modeling Building Blocks. In Business Systems Analysis with Ontologies, P. Green and M. 4826
Rosemann (Eds.), Idea Group, Hershey, PA, USA, pp. 130-173, 2005. 4827

[25] SHARON, A., de WECK, O. and DORI, D., Model-Based Design Structure Matrix: Deriving a DSM 4828
from an Object-Process Model. Systems Engineering, pp. 1-14, 2012. 4829

[26] SOMEKH, J., CHODER, M., and DORI, D., Conceptual Model-Based Systems Biology: Mapping 4830
Knowledge and Discovering Gaps in the mRNA Transcription Cycle. PLoS ONE, 4831
7(12): e51430. doi:10.1371/journal.pone.0051430, Dec. 20, 2012. 4832

[27] SOFFER, P., GOLANY, B., and DORI, D., ERP Modeling: A Comprehensive Approach. Information 4833
Systems 28, 6, pp. 673-690, 2003. 4834

[28] STURM, A., DORI, D., and SHEHORY, O., An Object-Process-Based Modeling Language for Multi-4835
Agent Systems. IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and 4836
Reviews, 40 (2) pp. 227-241, 2010. 4837

[29] STURM, A., DORI, D., and SHEHORY, O., Application-Based Domain Analysis Approach and Its 4838
Object-Process Methodology Implementation. International Journal of Software Engineering and 4839
Knowledge Engineering, 19, 1, February 2009. 4840

[30] YAROKER, Y., PERELMAN, V., and DORi, D., An OPM Conceptual Model-Based Executable 4841
Simulation Environment: Implementation and Evaluation. Systems Engineering, 16(4), pp. 381-390, 4842
2013. 4843

 4844

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Somekh:Judith.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Dori:Dov.html
http://www.informatik.uni-trier.de/~ley/db/journals/jbi/jbi42.html#PelegSD09
http://www.informatik.uni-trier.de/~ley/db/journals/jbi/jbi42.html#PelegSD09
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235646%232003%23999719993%23433522%23FLA%23display%23Volume_28,_Issue_6,_Pages_505-690_(September_2003)%23tagged%23Volume%23first%3D28%23Issue%23first%3D6%23Pages%23first%3D505%23last%3D690%23date%23(September_2003)%23&_auth=y&view=c&_acct=C000004038&_version=1&_urlVersion=0&_userid=32321&md5=8486442c3053a78e31ecf0e28226b340

